Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 1(2)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32995755

RESUMEN

RNA-binding proteins are key regulators of cell identity and function, which underscores the need for unbiased and versatile protocols to identify and characterize novel protein-RNA interactions. Here, we describe a simple and cost-effective in vitro RNA immunoprecipitation (iv-RIP) method to assess the direct or indirect RNA-binding ability of any protein of interest. The versatility of this method relies on the adaptability of the immunoprecipitation conditions and the choice of the RNA, which exponentially broadens the range of potential applications. For complete details on the use and execution of this protocol, please refer to Guallar et al. (2020).


Asunto(s)
Inmunoprecipitación/métodos , Proteínas de Unión al ARN , ARN , Animales , Ratones , Unión Proteica , ARN/análisis , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
2.
Cell Stem Cell ; 27(2): 300-314.e11, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32396862

RESUMEN

RNA editing of adenosine to inosine (A to I) is catalyzed by ADAR1 and dramatically alters the cellular transcriptome, although its functional roles in somatic cell reprogramming are largely unexplored. Here, we show that loss of ADAR1-mediated A-to-I editing disrupts mesenchymal-to-epithelial transition (MET) during induced pluripotent stem cell (iPSC) reprogramming and impedes acquisition of induced pluripotency. Using chemical and genetic approaches, we show that absence of ADAR1-dependent RNA editing induces aberrant innate immune responses through the double-stranded RNA (dsRNA) sensor MDA5, unleashing endoplasmic reticulum (ER) stress and hindering epithelial fate acquisition. We found that A-to-I editing impedes MDA5 sensing and sequestration of dsRNAs encoding membrane proteins, which promote ER homeostasis by activating the PERK-dependent unfolded protein response pathway to consequently facilitate MET. This study therefore establishes a critical role for ADAR1 and its A-to-I editing activity during cell fate transitions and delineates a key regulatory layer underlying MET to control efficient reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Edición de ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Inosina/metabolismo , ARN Bicatenario
3.
Diabetes ; 67(11): 2213-2226, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30104247

RESUMEN

AMPK is a cellular gauge that is activated under conditions of low energy, increasing energy production and reducing energy waste. Current evidence links hypothalamic AMPK with the central regulation of energy balance. However, it is unclear whether targeting hypothalamic AMPK has beneficial effects in obesity. Here, we show that genetic inhibition of AMPK in the ventromedial nucleus of the hypothalamus (VMH) protects against high-fat diet (HFD)-induced obesity by increasing brown adipose tissue (BAT) thermogenesis and subsequently energy expenditure. Notably, this effect depends upon the AMPKα1 isoform in steroidogenic factor 1 (SF1) neurons of the VMH, since mice bearing selective ablation of AMPKα1 in SF1 neurons display resistance to diet-induced obesity, increased BAT thermogenesis, browning of white adipose tissue, and improved glucose and lipid homeostasis. Overall, our findings point to hypothalamic AMPK in specific neuronal populations as a potential druggable target for the treatment of obesity and associated metabolic disorders.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dieta Alta en Grasa/efectos adversos , Neuronas/metabolismo , Obesidad/metabolismo , Factores de Empalme de ARN/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Tejido Adiposo Pardo/metabolismo , Animales , Composición Corporal/fisiología , Metabolismo Energético/fisiología , Masculino , Obesidad/etiología , Obesidad/genética , Consumo de Oxígeno/fisiología , Ratas , Ratas Sprague-Dawley
4.
Nat Genet ; 50(3): 443-451, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29483655

RESUMEN

Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We found that PSPC1 and TET2 contribute to ERVL and ERVL-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/fisiología , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/fisiología , Animales , Células Cultivadas , Cromatina/genética , Metilación de ADN , Dioxigenasas , Epigénesis Genética/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...