Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39131311

RESUMEN

Mammalian brains vary in size, structure, and function, but the extent to which evolutionarily novel cell types contribute to this variation remains unresolved1-4. Recent studies suggest there is a primate-specific population of striatal inhibitory interneurons, the TAC3 interneurons5. However, there has not yet been a detailed analysis of the spatial and phylogenetic distribution of this population. Here, we profile single cell gene expression in the developing pig (an ungulate) and ferret (a carnivore), representing 94 million years divergence from primates, and assign newborn inhibitory neurons to initial classes first specified during development6. We find that the initial class of TAC3 interneurons represents an ancestral striatal population that is also deployed towards the cortex in pig and ferret. In adult mouse, we uncover a rare population expressing Tac2, the ortholog of TAC3, in ventromedial striatum, prompting a reexamination of developing mouse striatal interneuron initial classes by targeted enrichment of their precursors. We conclude that the TAC3 interneuron initial class is conserved across Boreoeutherian mammals, with the mouse population representing Th striatal interneurons, a subset of which expresses Tac2. This study suggests that initial classes of telencephalic inhibitory neurons are largely conserved and that during evolution, neuronal types in the mammalian brain change through redistribution and fate refinement, rather than by derivation of novel precursors early in development.

2.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39131371

RESUMEN

The development of the human neocortex is a highly dynamic process and involves complex cellular trajectories controlled by cell-type-specific gene regulation1. Here, we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence. In parallel, we performed spatial transcriptomic analysis on a subset of the samples to illustrate spatial organization and intercellular communication. This atlas enables us to catalog cell type-, age-, and area-specific gene regulatory networks underlying neural differentiation. Moreover, combining single-cell profiling, progenitor purification, and lineage-tracing experiments, we have untangled the complex lineage relationships among progenitor subtypes during the transition from neurogenesis to gliogenesis in the human neocortex. We identified a tripotential intermediate progenitor subtype, termed Tri-IPC, responsible for the local production of GABAergic neurons, oligodendrocyte precursor cells, and astrocytes. Remarkably, most glioblastoma cells resemble Tri-IPCs at the transcriptomic level, suggesting that cancer cells hijack developmental processes to enhance growth and heterogeneity. Furthermore, by integrating our atlas data with large-scale GWAS data, we created a disease-risk map highlighting enriched ASD risk in second-trimester intratelencephalic projection neurons. Our study sheds light on the gene regulatory landscape and cellular dynamics of the developing human neocortex.

3.
Nature ; 630(8017): 587-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898291

RESUMEN

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Asunto(s)
Encéfalo , Neurofisiología , Neurociencias , Análisis de la Célula Individual , Humanos , Encéfalo/citología , Encéfalo/fisiología , Neuropatología/métodos , Neuropatología/tendencias , Neurofisiología/métodos , Neurofisiología/tendencias , Neurociencias/métodos , Neurociencias/tendencias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Flujo de Trabajo , Animales
4.
Neurol Genet ; 10(2): e200142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38586598

RESUMEN

Objectives: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathologic finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown. Methods: We present the case of a child with pharmacoresistant epilepsy who underwent epileptic focus resections at age 3 and 5 years and was found to have mosaic chr1q gain and HPA. We performed single-nuclei RNA sequencing (snRNA-seq) of brain tissue from the second resection. Results: snRNA-seq showed increased expression of chr1q genes specifically in subsets of neurons and astrocytes. Differentially expressed genes associated with inferred chr1q gain included AKT3 and genes associated with cell adhesion or migration. A subpopulation of astrocytes demonstrated marked enrichment for synapse-associated transcripts, possibly linked to the astrocytic inclusions observed in HPA. Discussion: snRNA-seq may be used to infer the cell-type specificity of mosaic chromosomal copy number changes and identify associated gene expression alterations, which in the case of chr1q gain may involve aberrations in cell migration. Future studies using spatial profiling could yield further insights on the molecular signatures of HPA.

5.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328093

RESUMEN

Introduction: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathological finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown. Methods: We present a child with pharmacoresistant epilepsy who underwent epileptic focus resections at age 3 and 5 years and was found to have mosaic chr1q gain and HPA. We performed single-nuclei RNA-sequencing (snRNA-seq) of brain tissue from the second resection. Results: snRNA-seq showed increased expression of chr1q genes specifically in subsets of neurons and astrocytes. Differentially expressed genes associated with inferred chr1q gain included AKT3 and genes associated with cell adhesion or migration. A subpopulation of astrocytes demonstrated marked enrichment for synapse-associated transcripts, possibly linked to the astrocytic inclusions observed in HPA. Discussion: snRNA-seq may be used to infer the cell type-specificity of mosaic chromosomal copy number changes and identify associated gene expression alterations, which in the case of chr1q gain may involve aberrations in cell migration. Future studies using spatial profiling could yield further insights on the molecular signatures of HPA.

6.
J Neurosci ; 43(50): 8621-8636, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37845031

RESUMEN

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and ß-adrenergic receptors. We found that stimulation of ß-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the ß1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the ß1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the ß1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.


Asunto(s)
Adrenérgicos , Astrocitos , Humanos , Ratones , Animales , Femenino , Adrenérgicos/metabolismo , Astrocitos/metabolismo , Transducción de Señal , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos
7.
Science ; 382(6667): eadf0834, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824647

RESUMEN

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Asunto(s)
Encefalopatías , Corteza Cerebral , Neuronas , Femenino , Humanos , Recién Nacido , Embarazo , Encefalopatías/genética , Corteza Cerebral/crecimiento & desarrollo , Redes Reguladoras de Genes , Interneuronas/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual , Masculino , Factores de Riesgo
8.
Nature ; 622(7981): 112-119, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704727

RESUMEN

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Asunto(s)
Proteómica , Sinapsis , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Ratones , Adulto Joven , Cognición/fisiología , Espinas Dendríticas , Edad Gestacional , Macaca , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Especificidad de la Especie , Sinapsis/metabolismo , Sinapsis/fisiología
9.
Sci Rep ; 13(1): 7689, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169815

RESUMEN

22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition. However, patient-derived iPS cells may harbor underlying genetic heterogeneity that can confound analysis. Furthermore, almost all available models reflect the commonly-found ~ 3 Mb "A-D" deletion at this locus. The ~ 1.5 Mb "A-B" deletion, a variant of the 22q11.2 deletion which may lead to different syndromic features, and is much more frequently inherited than the A-D deletion, remains under-studied due to lack of relevant models. Here we leveraged a CRISPR-based strategy to engineer isogenic iPS models of the 22q11.2 "A-B" deletion. Differentiation to excitatory neurons with subsequent characterization by transcriptomics and cell surface proteomics identified deletion-associated alterations in proliferation and adhesion. To illustrate in vivo applications of this model, we further implanted neuronal progenitor cells into the cortex of neonatal mice and found potential alterations in neuronal maturation. The isogenic models generated here will provide a unique resource to study this less-common variant of the 22q11.2 microdeletion syndrome.


Asunto(s)
Síndrome de DiGeorge , Animales , Ratones , Humanos , Síndrome de DiGeorge/genética , Estructuras Cromosómicas , Heterogeneidad Genética , Neuronas , Deleción Cromosómica , Cromosomas Humanos Par 22/genética
10.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
11.
Science ; 376(6590): eabn8861, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420933

RESUMEN

Terreros-Roncal et al. investigated the impacts of human neurodegeneration on immunostainings assumed to be associated with neurogenesis. However, the study provides no evidence that putative proliferating cells are linked to neurogenesis, that multipolar nestin+ astrocytes are progenitors, or that mature-looking doublecortin+ neurons are adult-born. Their histology-marker expression differs from what is observed in species where adult hippocampal neurogenesis is well documented.


Asunto(s)
Hipocampo , Enfermedades Neurodegenerativas , Neurogénesis , Adulto , Astrocitos , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología
12.
Nature ; 603(7903): 871-877, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322231

RESUMEN

Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)1, and recent studies have identified primate-specific neuronal populations at the molecular level2. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific TAC3 striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.


Asunto(s)
Evolución Biológica , Cuerpo Estriado , Desarrollo Embrionario , Macaca , Neurogénesis , Neuronas , Bulbo Olfatorio , Animales , Cuerpo Estriado/crecimiento & desarrollo , Neuronas Dopaminérgicas , Femenino , Macaca/crecimiento & desarrollo , Mamíferos , Ratones , Neurogénesis/fisiología , Bulbo Olfatorio/fisiología , Embarazo , Primates
13.
Science ; 375(6579): eabk2346, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084970

RESUMEN

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Asunto(s)
Interneuronas/fisiología , Eminencia Media/embriología , Células-Madre Neurales/fisiología , Neurogénesis , Prosencéfalo/citología , Animales , Animales Recién Nacidos , Movimiento Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Perfilación de la Expresión Génica , Edad Gestacional , Humanos , Interneuronas/citología , Eminencia Media/citología , Eminencia Media/crecimiento & desarrollo , Ratones , Células-Madre Neurales/trasplante , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Trasplante Heterólogo
14.
Science ; 375(6579): eabf5546, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084981

RESUMEN

Evolutionary development of the human brain is characterized by the expansion of various brain regions. Here, we show that developmental processes specific to humans are responsible for malformations of cortical development (MCDs), which result in developmental delay and epilepsy in children. We generated a human cerebral organoid model for tuberous sclerosis complex (TSC) and identified a specific neural stem cell type, caudal late interneuron progenitor (CLIP) cells. In TSC, CLIP cells over-proliferate, generating excessive interneurons, brain tumors, and cortical malformations. Epidermal growth factor receptor inhibition reduces tumor burden, identifying potential treatment options for TSC and related disorders. The identification of CLIP cells reveals the extended interneuron generation in the human brain as a vulnerability for disease. In addition, this work demonstrates that analyzing MCDs can reveal fundamental insights into human-specific aspects of brain development.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Interneuronas/citología , Células-Madre Neurales/fisiología , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Encéfalo/embriología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis , Linaje de la Célula , Proliferación Celular , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/fisiología , Pérdida de Heterocigocidad , Células-Madre Neurales/citología , Organoides , RNA-Seq , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066025

RESUMEN

A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.


Asunto(s)
Interneuronas/metabolismo , Prosencéfalo/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Femenino , Edad Gestacional , Embarazo , Prosencéfalo/metabolismo
16.
Podium (Pinar Río) ; 16(1): 168-186, tab
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1155067

RESUMEN

RESUMEN Se realizó un estudio transversal, descriptivo y correlacional para determinar la relación entre variables psicológicas y lesiones en 34 lanzadores de béisbol de diferentes niveles competitivos. Se describieron las lesiones mediante análisis de frecuencias y distribución porcentual, así como media, desviación típica, asimetría y curtosis para las variables psicológicas; se realizó además la prueba de normalidad mediante K-S para una muestra. Se compararon las variables psicológicas entre grupos de lanzadores mediante Anova de un factor y se analizó la relación entre ambos grupos de variables mediante el coeficiente de correlación de Pearson. Se compararon las variables psicológicas en relación a las lesiones, empleando la prueba t para muestras independientes y Anova de un factor en cada caso, con un intervalo de confianza del 95 % donde p≤0.05. Fueron empleados el cuestionario de aspectos deportivos y lesiones, inventario de ansiedad rasgo-estado, inventario de ansiedad estado en competencia e inventario psicológico de ejecución deportiva. Se obtuvo una marcada presencia de lesiones y un perfil psicológico donde la ansiedad-rasgo, el control de la atención, la autoconfianza, el nivel motivacional y el control de afrontamiento positivo constituyen los puntos fuertes, existiendo diferencias en la ansiedad, según el nivel competitivo. Excepto el control de la actitud, las habilidades psicológicas mostraron relación con las lesiones. Los lanzadores con mayor cantidad y gravedad de lesiones durante las competencias presentan mayor ansiedad. Se concluye afirmando que la preparación psicológica del lanzador de béisbol debe poseer la finalidad de optimizar su rendimiento deportivo y preservar su estado de salud.


RESUMO Foi realizado um estudo transversal, descritivo e correlacional para determinar a relação entre variáveis psicológicas e lesões em 34 lançadores de beisebol de diferentes níveis competitivos. As lesões foram descritas por análise de frequência e distribuição percentual, assim como média, desvio padrão, enviesamento e curtose para as variáveis psicológicas; o teste de normalidade K-S também foi realizado para a amostra. As variáveis psicológicas foram comparadas entre grupos de pitchers através de um fator único. Anova e a relação entre ambos os grupos de variáveis foi analisada por meio do coeficiente de correlação de Pearson. As variáveis psicológicas foram comparadas em relação às lesões, utilizando o teste t para amostras independentes e um fator Anova em cada caso, com um intervalo de confiança de 95 %, em que p≤0.05. Foi utilizado o questionário de aspectos e lesões desportivas, inventário de ansiedade do estado do traço, inventário de ansiedade do estado na competição e inventário psicológico do desempenho desportivo; uma presença marcada de lesões e um perfil psicológico onde a ansiedade do traço, o controlo da atenção, a autoconfiança, o nível motivacional e o controlo positivo da resposta constituem os pontos fortes obtidos, com diferenças na ansiedade, de acordo com o nível competitivo. Com restrição do controlo de atitude, as capacidades psicológicas mostraram relação com lesões. Os lançadores com maior quantidade e gravidade de lesões durante as competições apresentam maior ansiedade. Conclui-se que a preparação psicológica do lançador de beisebol deve ter o propósito de otimizar o seu desempenho desportivo e preservar a sua saúde.


ABSTRACT A cross-sectional, descriptive and correlational study was carried out to determine the relationship between psychological variables and injuries in 34 baseball pitchers of different competitive levels. Injuries were described by frequency analysis and percentage distribution, as well as mean, standard deviation, asymmetry and kurtosis for psychological variables; the K-S normality test was also performed for the sample. The psychological variables were compared between groups of pitchers by means of a one-factor Anova and the relationship between both groups of variables was analyzed by means of Pearson's correlation coefficient. Psychological variables were compared in relation to injuries, using the t-test for independent samples and one-factor Anova in each case, with a confidence interval of 95 % where p≤0.05. The questionnaire of sports aspects and injuries, trait-state anxiety inventory, state anxiety inventory in competition and psychological inventory of sports performance were used; a marked presence of injuries and a psychological profile where trait-anxiety, attention control, self-confidence, motivational level and positive coping control constitute the strong points were obtained, with differences in anxiety, according to the competitive level. Except for attitude control, psychological skills showed a relationship with injuries. The throwers with greater number and severity of injuries during the competitions present greater anxiety. It is concluded by affirming that the psychological preparation of the baseball pitcher should have the purpose of optimizing his sports performance and preserving his state of health.

17.
J Neurosci ; 41(12): 2554-2565, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762407

RESUMEN

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Adulto , Diferenciación Celular/fisiología , Niño , Humanos , Plasticidad Neuronal/fisiología
18.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33637558

RESUMEN

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.


Asunto(s)
Ganglios/embriología , Ganglios/trasplante , Interneuronas/trasplante , Eminencia Media/embriología , Eminencia Media/trasplante , Trasplante Heterólogo/métodos , Animales , Femenino , Ganglios/citología , Masculino , Eminencia Media/citología , Ratas , Ratas Sprague-Dawley , Porcinos , Técnicas de Cultivo de Tejidos/métodos
19.
Cell Rep ; 33(2): 108256, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053356

RESUMEN

Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis , Seudópodos/metabolismo , Telencéfalo/irrigación sanguínea , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Endotelio Vascular/metabolismo , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Neuronas/citología , Seudópodos/ultraestructura , Telencéfalo/ultraestructura , Imagen de Lapso de Tiempo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Elife ; 92020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32452758

RESUMEN

​Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.


Asunto(s)
Regulación de la Expresión Génica , Interneuronas/metabolismo , Factor de Transcripción MafB/fisiología , Proteínas Proto-Oncogénicas c-maf/fisiología , Animales , Femenino , Factores de Transcripción MEF2/metabolismo , Ratones , Enfermedades del Sistema Nervioso/etiología , Embarazo , Precursores de Proteínas/genética , Receptores CXCR4/metabolismo , Receptores Opioides/genética , Análisis de la Célula Individual , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...