Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36812978

RESUMEN

Addressing the patterns of variation in thermal traits is crucial to better predict the potential effects of climate change on organisms. Here, we assessed seasonal (winter vs summer) adjustments in key thermoregulatory traits in eight Mediterranean-resident songbirds. Overall, songbirds increased whole-animal (by 8%) and mass-adjusted (by 9%) basal metabolic rate and decreased (by 56%) thermal conductance below the thermoneutral zone during winter. The magnitude of these changes was within the lower values found in songbirds from northern temperate areas. Moreover, songbirds increased (by 11%) evaporative water loss within the thermoneutral zone during summer, while its rate of increase above the inflection point of evaporative water loss (i.e., the slope of evaporative water loss versus temperature) decreased by 35% during summer - a value well above that reported for other temperate and tropical songbirds. Finally, body mass increased by 5% during winter, a pattern similar to that found in many northern temperate species. Our findings support the idea that physiological adjustments might enhance the resilience of Mediterranean songbirds to environmental changes, with short-term benefits by saving energy and water under thermally stressful conditions. Nevertheless, not all species showed the same patterns, suggesting different strategies in their thermoregulatory adaptations to seasonal environments.


Asunto(s)
Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Estaciones del Año , Regulación de la Temperatura Corporal/fisiología , Metabolismo Basal/fisiología , Aclimatación/fisiología
2.
J Exp Biol ; 225(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408945

RESUMEN

Songbirds are one of the groups most vulnerable to extreme heat events. Although several recent studies have assessed their physiological responses to heat, most of them have focused solely on arid-zone species. We investigated thermoregulatory responses to heat in eight small-sized songbirds occurring in the Mediterranean Basin, where heatwaves are becoming more frequent and intense. Specifically, we determined their heat tolerance limits (HTLs) and evaporative cooling efficiency, and evaluated their current and future vulnerabilities to heat in southwestern Iberia, a Mediterranean climate warming hotspot. To do this, we exposed birds to an increasing profile of air temperatures (Ta) and measured resting metabolic rate (RMR), evaporative water loss (EWL), evaporative cooling efficiency (the ratio between evaporative heat loss and metabolic heat production) and body temperature (Tb). HTL ranged between 40 and 46°C across species, and all species showed rapid increases in RMR, EWL and Tb in response to increasing Ta. However, only the crested lark (Galerida cristata) achieved an evaporative cooling efficiency greater than 1. The studied songbirds currently experience summer Ta maxima that surpass the upper critical temperatures of their thermoneutral zone and even their HTL. Our estimates indicate that five of the eight species will experience moderate risk of lethal dehydration by the end of the century. We argue that the limited heat tolerance and evaporative cooling efficiency of small-sized Mediterranean songbirds make them particularly vulnerable to heatwaves, which will be exacerbated under future climate change scenarios.


Asunto(s)
Pájaros Cantores , Termotolerancia , Animales , Calor
3.
Ecol Evol ; 11(22): 15936-15946, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824801

RESUMEN

There is growing evidence on the role of legs and bill as 'thermal windows' in birds coping with heat stress. However, there is a lack of empirical work examining the relationship between the relative bill and/or leg surface areas and key thermoregulatory traits such as the limits of the thermoneutral zone (TNZ) or the cooling efficiency at high temperatures. Here, we explored this relationship in a Mediterranean population of Great tit (Parus major) facing increasing thermal stress in its environment. The lower and upper critical limits of the TNZ were found to be 17.7 ± 1.6ºC and 34.5 ± 0.7°C, respectively, and the basal metabolic rate was 0.96 ± 0.12 ml O2 min-1 on average. The evaporative water loss (EWL) inflection point was established at 31.85 ± 0.27°C and was not significantly different from the value of the upper critical limit. No significant relationship was observed between the relative bill or tarsi size and TNZ critical limits, breadth, mass-independent VO2, or mass-independent EWL at any environmental temperature (from 10 to 40°C). However, Great tit males (but not females) with larger tarsi areas (a proxy of leg surface area) showed higher cooling efficiencies at 40°C. We found no support for the hypothesis that the bill surface area plays a significant role as a thermal window in Great tits, but the leg surface areas may play a role in males' physiological responses to high temperatures. On the one hand, we argue that the studied population occupies habitats with available microclimates and fresh water for drinking during summer, so active heat dissipation by EWL might be favored instead of dry heat loss through the bill surface. Conversely, male dominance behaviors could imply a greater dependence on cutaneous EWL through the upper leg surfaces as a consequence of higher exposure to harsh environmental conditions than faced by females.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32197969

RESUMEN

Many bird species occupy habitats where environmental temperatures fall well below their thermoneutral zone (TNZ), so they must deal with high energy costs of thermoregulation to keep in heat balance. In such circumstances, specific dynamic action (SDA) - also referred to as heat increment of feeding - could be used to substitute for these high thermoregulatory costs. If birds ingest food before going to roost in cold environments, the SDA will be beneficial as an energy-conserving mechanism by thermal substitution. We investigated the magnitude and duration of SDA in a small-sized shorebird, the dunlin Calidris alpina, while feeding on living prey. We simulated in the aviary the food availability of a semidiurnal tidal cycle, and calculated the thermal substitution by SDA below their TNZ at the beginning of the "high tide" (resting period), after feeding ad libitum during the "low tide" (feeding period). Within TNZ (25 °C), dunlins consumed 12% (2.15 kJ) of the gross energy intake in excess by the SDA, with a duration of ~95 min. At 10 °C, i.e. below the lower critical limit of TNZ, SDA magnitude and duration were reduced by 29% and 31%, respectively. The amount of food ingested significantly affected the duration and magnitude of SDA, as well as the dunlin's body temperature. Thermal substitution by SDA saved 11% of the dunlin's theoretical daily energy requirement during winter. This thermal substitution could be commonly used by birds going to roost in cold climates. Interacting with other different behavioral and/or physiological strategies would help to maintain lower energetic costs and enhance survival in cold environments.


Asunto(s)
Temperatura Corporal/fisiología , Charadriiformes/fisiología , Conducta Alimentaria/fisiología , Sueño/fisiología , Animales , Regulación de la Temperatura Corporal , Charadriiformes/metabolismo , Ecosistema , Metabolismo Energético
5.
PLoS One ; 14(7): e0220400, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31344107

RESUMEN

Loss of natural wetlands is a global phenomenon that has severe consequences for waterbird populations and their associated ecosystem services. Although agroecosystems can reduce the impact of natural habitat loss, drivers of use of such artificial habitats by waterbirds remain poorly understood. Using the cosmopolitan northern pintail Anas acuta as a model species, we monitored home-range and fine-scale resource selection across the agricultural landscape. Individuals were tracked using GPS-GSM transmitters, and a suite of environmental and landscape features were measured throughout the winter seasons. Spatial patterns of habitat use were analysed using generalized linear mixed effect models by integrating field-observations with GPS telemetry. All birds used rice fields as foraging grounds at night and commuted to an adjacent reservoir to roost during daylight. Home-ranges and maximum foraging distances of nocturnally foraging birds increased with decreasing availability of flooded fields, and were positively correlated with moonlight levels. Birds selected flooded rice paddies (water depth range: 9-21 cm) with standing stubble and substrate with pebbles smaller than 0.5 cm in diameter. Density of rice seeds, rice paddy size, and other environmental and landscape features did not emerge as significant predictors. Our findings indicate that nocturnal foraging of northern pintails within rice fields is driven primarily by straw manipulation, water level and substrate pebble size. Thus, the presence of standing stubble in flooded paddies with soft bottoms should be prioritized to improve foraging areas for dabbling ducks. These management procedures in themselves would not increase economic costs or affect rice production and could be applied for dabbling-duck conservation throughout the world.


Asunto(s)
Agricultura , Anseriformes/fisiología , Ritmo Circadiano/fisiología , Ecosistema , Humedales , Agricultura/métodos , Migración Animal/fisiología , Animales , Conducta Animal , Inundaciones , Oryza/crecimiento & desarrollo , Ríos , Estaciones del Año , España
6.
Sci Total Environ ; 511: 288-97, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25553543

RESUMEN

Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605±18,311 individuals) on rice fields during winter averaged at 89.9±39.0 kJ·m(-2), with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5±504.7 seeds·m(-2) in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha(-1)) of N and an additional 5.0 tons (0.2 kg·ha(-1)) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in 'dehesas' to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the conservation of migratory waterbirds.


Asunto(s)
Biodiversidad , Aves/fisiología , Conservación de los Recursos Naturales/métodos , Fenómenos Ecológicos y Ambientales , Ecosistema , Agricultura , Animales , Oryza , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...