Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113366, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938974

RESUMEN

Monoclonal antibodies against the Ebola virus (EBOV) surface glycoprotein are effective treatments for EBOV disease. Antibodies targeting the EBOV glycoprotein (GP) head epitope have potent neutralization and Fc effector function activity and thus are of high interest as therapeutics and for vaccine design. Here we focus on the head-binding antibodies 1A2 and 1D5, which have been identified previously in a longitudinal study of survivors of EBOV infection. 1A2 and 1D5 have the same heavy- and light-chain germlines despite being isolated from different individuals and at different time points after recovery from infection. Cryoelectron microscopy analysis of each antibody in complex with the EBOV surface GP reveals key amino acid substitutions in 1A2 that contribute to greater affinity, improved neutralization potency, and enhanced breadth as well as two strategies for antibody evolution from a common site.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Estudios Longitudinales
2.
Cell Host Microbe ; 31(2): 260-272.e7, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36708708

RESUMEN

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Anticuerpos Antivirales , Glicoproteínas , Epítopos , Anticuerpos Neutralizantes
3.
Sci Transl Med ; 14(668): eabq0991, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288283

RESUMEN

Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.


Asunto(s)
Fiebre de Lassa , Vacunas Virales , Animales , Humanos , Virus Lassa , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Polisacáridos , Antivirales , Mamíferos
4.
Commun Biol ; 5(1): 785, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927436

RESUMEN

The envelope glycoprotein GP of the ebolaviruses is essential for host cell entry and the primary target of the host antibody response. GP is heavily glycosylated with up to 17 N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation is important for host cell attachment, GP stability and fusion activity, and shielding from neutralization by serum antibodies. Here, we use glycoproteomics to profile the site-specific glycosylation patterns of ebolavirus GP. We detect up to 16 unique O-linked glycosylation sites in the MLD, and two O-linked sites in the receptor-binding GP1 subunit. Multiple O-linked glycans are observed within N-linked glycosylation sequons, suggesting crosstalk between the two types of modifications. We confirmed C-mannosylation of W288 in full-length trimeric GP. We find complex glycosylation at the majority of N-linked sites, while the conserved sites N257 and especially N563 are enriched in unprocessed glycans, suggesting a role in host-cell attachment via DC-SIGN/L-SIGN. Our findings illustrate how N-, O-, and C-linked glycans together build the heterogeneous glycan shield of GP, guiding future immunological studies and functional interpretation of ebolavirus GP-antibody interactions.


Asunto(s)
Ebolavirus , Ebolavirus/metabolismo , Glicosilación , Mucinas/metabolismo , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo
5.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647970

RESUMEN

A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.


Asunto(s)
Actomiosina/metabolismo , Túbulos Renales Colectores/metabolismo , Neuropéptidos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Polaridad Celular/fisiología , Células Cultivadas , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Miosina Tipo II/metabolismo , Transducción de Señal/fisiología
6.
Science ; 374(6566): 472-478, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34554826

RESUMEN

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Mapeo Epitopo , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Antígenos Virales/química , Antígenos Virales/inmunología , COVID-19/terapia , Humanos , Epítopos Inmunodominantes/química , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química
7.
Cell Host Microbe ; 27(6): 976-991.e11, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32320678

RESUMEN

Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Linfocitos B , Chlorocebus aethiops , Modelos Animales de Enfermedad , Ebolavirus/inmunología , Epítopos/inmunología , Femenino , Glicoproteínas/inmunología , Cobayas , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Sobrevivientes , Células THP-1 , Células Vero , Proteínas del Envoltorio Viral/inmunología
8.
J Infect Dis ; 219(3): 415-419, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30203042

RESUMEN

Ebola virus infection causes severe disease in humans and represents a global health threat. Candidates for immunotherapeutics and vaccines have shown promise in clinical trials, although they are ineffective against other members of the Ebolavirus genus that also cause periodic, lethal outbreaks. In this study, we present a crystal structure of a pan-ebolavirus antibody, 6D6, as well as single-particle electron microscopy reconstructions of 6D6 in complex with Ebola and Bundibugyo virus glycoproteins. 6D6 binds to the conserved glycoprotein fusion peptide, implicating it as a site of immune vulnerability that could be exploited to reliably elicit a pan-ebolavirus neutralizing antibody response.


Asunto(s)
Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas Virales de Fusión/química , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas/inmunología , Glicoproteínas/química , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Inmunoterapia Activa , Modelos Moleculares , Péptidos , Proteínas Virales de Fusión/inmunología
9.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26490995

RESUMEN

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales/embriología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Citoesqueleto/genética , Células Epiteliales/citología , Ratones , Proteína de Unión al GTP cdc42/genética
10.
Infect Immun ; 81(8): 2714-23, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23690402

RESUMEN

The small Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, invasion, migration, differentiation, and morphogenesis. As the role of Cdc42-dependent signaling in fibroblasts in vivo is unknown, we attempted to specifically delete it in these cells by crossing the Cdc42(fl/fl) mouse with an fibroblast-specific protein 1 (FSP1)-Cre mouse, which is thought to mediate recombination exclusively in fibroblasts. Surprisingly, the FSP1-Cre;Cdc42(fl/fl) mice died at 3 weeks of age due to overwhelming suppurative upper airway infections that were associated with neutrophilia and lymphopenia. Even though major aberrations in lymphoid tissue development were present in the mice, the principal cause of death was severe migration and killing abnormalities of the neutrophil population resulting in an inability to control infection. We also show that in addition to fibroblasts, FSP1-Cre deleted Cdc42 very efficiently in all leukocytes. Thus, by using this nonspecific Cre mouse, we inadvertently demonstrated the importance of Cdc42 in host protection from lethal infections and suggest a critical role for this small GTPase in innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Infecciones/inmunología , Proteína de Unión al GTP cdc42/inmunología , Animales , Quimiotaxis de Leucocito/inmunología , Fibroblastos/metabolismo , Citometría de Flujo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neutrófilos/inmunología , Neutrófilos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA