Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38922019

RESUMEN

Despite the annual vaccination of livestock against foot and mouth disease (FMD) in the United Arab Emirates (UAE), outbreaks of the disease continue to be reported. The effective control of field outbreaks by vaccination requires that the vaccines used are antigenically matched to circulating field FMD viruses. In this study, a vaccine matching analysis was performed using the two-dimensional virus neutralization test (VNT) for three field isolates belonging to the O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages collected from different FMD outbreaks that occurred within the Abu Dhabi Emirate in 2021 affecting Arabian oryx (Oryx leucoryx), goat, and sheep. In addition, post-vaccination antibodies in sheep and goats were measured using solid-phase competitive ELISA (SPCE) for FMDV serotypes A and O at five months after a single vaccine dose and a further 28 days later after a second dose of the FMD vaccine. An analysis of vaccine matching revealed that five out of the six vaccine strains tested were antigenically matched to the UAE field isolates, with r1-values ranging between 0.32 and 0.75. These results suggest that the vaccine strains (O-3039 and O1 Manisa) included in the FMD vaccine used in the Abu Dhabi Emirate are likely to provide protection against outbreaks caused by the circulating O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages. All critical residues at site 1 and site 3 of VP1 were conserved in all isolates, although an analysis of the VP1-encoding sequences revealed 14-16 amino acid substitutions compared to the sequence of the O1 Manisa vaccine strain. This study also reports on the results of post-vaccination monitoring where the immunization coverage rates against FMDV serotypes A and O were 47% and 69% five months after the first dose of the FMD vaccine, and they were increased to 81 and 88%, respectively, 28 days after the second dose of the vaccine. These results reinforce the importance of using a second booster dose to maximize the impact of vaccination. In conclusion, the vaccine strains currently used in Abu Dhabi are antigenically matched to circulating field isolates from two serotype O clades (O/ME-SA/PanAsia-2/ANT-10 sublineage and O/ME-SA/SA-2018 lineage). The bi-annual vaccination schedule for FMD in the Abu Dhabi Emirate has the potential to establish a sufficient herd immunity, especially when complemented by additional biosecurity measures for comprehensive FMD control. These findings are pivotal for the successful implementation of the region's vaccination-based FMD control policy, showing that high vaccination coverage and the wide-spread use of booster doses in susceptible herds is required to achieve a high level of FMDV-specific antibodies in vaccinated animals.

2.
Sci Rep ; 13(1): 14787, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684280

RESUMEN

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.


Asunto(s)
Antílopes , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Ovinos , Seroconversión , Peste de los Pequeños Rumiantes/diagnóstico , Anticuerpos , Animales Salvajes , Búfalos , Camelus , Cabras
3.
Front Vet Sci ; 9: 1029075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590816

RESUMEN

Antigen banks have been established to supply foot-and-mouth disease virus (FMDV) vaccines at short notice to respond to incursions or upsurges in cases of FMDV infection. Multiple vaccine strains are needed to protect against specific FMDV lineages that circulate within six viral serotypes that are unevenly distributed across the world. The optimal selection of distinct antigens held in a bank must carefully balance the desire to cover these risks with the costs of purchasing and maintaining vaccine antigens. PRAGMATIST is a semi-quantitative FMD vaccine strain selection tool combining three strands of evidence: (1) estimates of the risk of incursion from specific areas (source area score); (2) estimates of the relative prevalence of FMD viral lineages in each specific area (lineage distribution score); and (3) effectiveness of each vaccine against specific FMDV lineages based on laboratory vaccine matching tests (vaccine coverage score). The output is a vaccine score, which identifies vaccine strains that best address the threats, and consequently which are the highest priority for inclusion in vaccine antigen banks. In this paper, data used to populate PRAGMATIST are described, including the results from expert elicitations regarding FMD risk and viral lineage circulation, while vaccine coverage data is provided from vaccine matching tests performed at the WRLFMD between 2011 and 2021 (n = 2,150). These data were tailored to working examples for three hypothetical vaccine antigen bank perspectives (Europe, North America, and Australia). The results highlight the variation in the vaccine antigens required for storage in these different regions, dependent on risk. While the tool outputs are largely robust to uncertainty in the input parameters, variation in vaccine coverage score had the most noticeable impact on the estimated risk covered by each vaccine, particularly for vaccines that provide substantial risk coverage across several lineages.

4.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066336

RESUMEN

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015-2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant's gazelle, impala, Thomson's gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018-2019, a cross-sectional survey of randomly selected African buffalo and Grant's gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant's gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife-livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson's gazelle and wildebeest.


Asunto(s)
Animales Salvajes/virología , Ecosistema , Ganado/virología , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes/fisiología , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/historia , Enfermedades de los Animales/virología , Animales , Estudios Transversales , Brotes de Enfermedades , Geografía Médica , Historia del Siglo XXI , Kenia/epidemiología , Peste de los Pequeños Rumiantes/historia , Virus de la Peste de los Pequeños Rumiantes/clasificación , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Tanzanía/epidemiología
5.
Viruses ; 13(5)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063385

RESUMEN

In foot-and-mouth disease (FMD)-endemic countries, vaccination is commonly used to control the disease, whilst in FMD-free countries, vaccination is considered as an option, in addition to culling the infected and in contact animals. FMD vaccines are mainly comprised of inactivated virions and stimulate protective antibodies to virus structural proteins. In contrast, infection with FMD virus leads to virus replication and additional antibody responses to viral nonstructural proteins (NSP). Therefore, antibodies against NSPs are used to differentiate infection in vaccinated animals (DIVA), in order to estimate the prevalence of infection or its absence. Another advantage of NSP antibody tests is that they detect FMD infection in the field, irrespective of the serotypes of virus in circulation. In cattle, the NSP tests that target the 3ABC polyprotein provides the highest sensitivity, detecting up to 90% of vaccinated animals that become carriers after exposure to infection, with a specificity of around 99%. Due to insufficient diagnostic sensitivity and specificity, detection of a low level of infection is difficult at the population level with a high degree of confidence. The low level of non-specific responses can be overcome by retesting samples scored positive using a second confirmatory test, which should have at least comparable sensitivity to the first test. In this study, six in-house tests were developed incorporating different NSP antigens, and validated using bovine sera from naïve animals, field cases and experimentally vaccinated and/or infected animals. In addition, two (short and long incubation) new commercial NSP tests based on 3ABC competitive blocking ELISAs (ID Screen® FMD NSP Competition, IDvet, France) were validated in this study. The two commercial ELISAs had very similar sensitivities and specificities that were not improved by lengthening the incubation period. Several of the new in-house tests had performance characteristics that were nearly as good as the commercial ELISAs. Finally, the in-house tests were evaluated for use as confirmatory tests following screening with the PrioCHECK® and ID Screen® FMDV NS commercial kits, to assess the diagnostic performance produced by a multiple testing strategy. The in-house tests could be used in series (to confirm) or in parallel (to augment) with the PrioCHECK® and IDvet® FMDV NS commercial kits, in order to improve either the specificity or sensitivity of the overall test system, although this comes at the cost of a reduction in the counterpart (sensitivity/specificity) parameter.


Asunto(s)
Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática/normas , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/inmunología , Vacunación/estadística & datos numéricos , Vacunación/veterinaria , Animales , Formación de Anticuerpos , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Sensibilidad y Especificidad
6.
Viruses ; 12(3)2020 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156067

RESUMEN

In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife-livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest-savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs.


Asunto(s)
Animales Salvajes/virología , Ganado/virología , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/virología , Virus de la Peste de los Pequeños Rumiantes , África Oriental/epidemiología , Animales , Anticuerpos Antivirales/inmunología , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Femenino , Geografía Médica , Cabras , Masculino , Virus de la Peste de los Pequeños Rumiantes/clasificación , Virus de la Peste de los Pequeños Rumiantes/fisiología , Estudios Seroepidemiológicos , Ovinos
7.
Nat Ecol Evol ; 2(9): 1449-1457, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082738

RESUMEN

Livestock production in Africa is key to national economies, food security and rural livelihoods, and > 85% of livestock keepers live in extreme poverty. With poverty elimination central to the Sustainable Development Goals, livestock keepers are therefore critically important. Foot-and-mouth disease is a highly contagious livestock disease widespread in Africa that contributes to this poverty. Despite its US$2.3 billion impact, control of the disease is not prioritized: standard vaccination regimens are too costly, its impact on the poorest is underestimated, and its epidemiology is too weakly understood. Our integrated analysis in Tanzania shows that the disease is of high concern, reduces household budgets for human health, and has major impacts on milk production and draft power for crop production. Critically, foot-and-mouth disease outbreaks in cattle are driven by livestock-related factors with a pattern of changing serotype dominance over time. Contrary to findings in southern Africa, we find no evidence of frequent infection from wildlife, with outbreaks in cattle sweeping slowly across the region through a sequence of dominant serotypes. This regularity suggests that timely identification of the epidemic serotype could allow proactive vaccination ahead of the wave of infection, mitigating impacts, and our preliminary matching work has identified potential vaccine candidates. This strategy is more realistic than wildlife-livestock separation or conventional foot-and-mouth disease vaccination approaches. Overall, we provide strong evidence for the feasibility of coordinated foot-and-mouth disease control as part of livestock development policies in eastern Africa, and our integrated socioeconomic, epidemiological, laboratory and modelling approach provides a framework for the study of other disease systems.


Asunto(s)
Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Vacunación , Animales , Búfalos , Bovinos , Brotes de Enfermedades , Cabras , Estudios Seroepidemiológicos , Ovinos , Tanzanía/epidemiología
8.
Vet Res ; 46: 77, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26156024

RESUMEN

The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems.


Asunto(s)
Búfalos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/epidemiología , África Central/epidemiología , África Occidental/epidemiología , Animales , Anticuerpos Antivirales/sangre , Fiebre Aftosa/virología , Parques Recreativos , Prevalencia , Estudios Seroepidemiológicos , Serogrupo , Proteínas Virales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...