Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(3): 473-487.e4, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37963470

RESUMEN

Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.


Asunto(s)
Motivación , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Recompensa , Neuronas/fisiología , Giro del Cíngulo/fisiología , Toma de Decisiones/fisiología
2.
Eur J Hybrid Imaging ; 7(1): 21, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981626

RESUMEN

AIM: [123I]Ioflupane (DaTSCAN) has a high binding affinity to the dopamine (DA) transporter (DaT) and tenfold less affinity to serotonin (5-HT) transporter (SERT). Both neurotransmitters are considered to contribute to body weight regulation. This study assesses the association between body mass index (BMI) and DaTSCAN availability in brain. METHOD: Scans from 74 consecutive patients who had undergone DaTSCAN single-photon emission computed tomography-computed tomography (SPECT-CT) were used to obtain semi- and absolute quantitative data in several volumes of interest (VOIs). Relative semi-quantitative specific binding ratios (SBRs) from Chang attenuated SPECT were obtained from GE DaTQUANT. Absolute normalised concentration (NC) was calculated from attenuation/scatter corrected SPECT-CT images, using an adapted version of the EARL Ltd (European Association of Nuclear Medicine (EANM) Research 4 Life) template. Scans were subdivided into either degenerative parkinsonism (abnormal = 49), borderline (n = 14) or scan without evidence of dopaminergic deficit (SWEDD = 11) using visual assessment and SBR values by two nuclear medicine consultants. RESULTS: SBRs did not correlate with BMI. However, NC values correlated negatively in the entire cohort, with the strongest correlation in the frontal (r = - 0.649. p = 0.000), occipital (r = - 0.555, p = 0.000) regions and pons (r = - 0.555, p = 0.000). In the abnormal (n = 49) and SWEDD group (n = 11), NC of the frontal region was the most correlated with BMI (r = - 0.570, p = 0.000; r = - 0.813, p = 0.002, respectively). In the borderline group (n = 14), the left posterior putamen displayed the strongest correlation (r = - 0.765, p = 0.001). CONCLUSION: Absolute NC values demonstrate a strong inverse correlation with BMI, strongest in the extrastriatal regions. Due to the predominately non-overlapping distribution of DaT and SERT, this study suggests greater involvement of SERT in obesity with possible interplay with DA transmission.

3.
Nucl Med Commun ; 44(10): 843-853, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37395542

RESUMEN

AIM: [123]I-Ioflupane (DaTSCAN) binds to the presynaptic dopamine transporter (DAT) and with a lower affinity to the serotonin transporter (SERT). We aimed to develop a novel method to quantify absolute uptake in the striatal (predominantly DAT binding) and extra-striatal regions (mainly SERT binding) using single-photon computed tomography-computed tomography (SPECT-CT) DaTSCAN and to improve DaTSCAN image quality. METHOD: Twenty-six patients with Parkinsonism underwent DaTSCAN SPECT-CT prospectively. The scans were visually analyzed independently by two experienced reporters. Specific binding ratios (SBRs) from Chang attenuation corrected SPECT were obtained using GE DaTQuant. Normalized concentrations and specific uptakes (NSU) from measured attenuation and modelled scatter-corrected SPECT-CT were obtained using HERMES Hybrid Recon and Affinity and modified EARL volumes of interest. RESULTS: Striatal NSU and SBR positively correlate ( R  = 0.65-0.88, P  = 0.00). SBR, normalized concentrations, and NSU box plots differentiated between scans without evidence of dopaminergic deficit and abnormal scans. Interestingly, body weight inversely correlated with normalized concentrations values in extra-striatal regions [frontal ( R  = 0.81, P  = 0.00); thalamus ( R  = 0.58, P  = 0.00); occipital ( R  = 0.69, P  = 0.00)] and both caudate nuclei [ R  = 0.42, P  = 0.03 (Right), R  = 0.52, P  = 0.01 (Left)]. Both reporters noted improved visual quality of SPECT-CT versus SPECT images for all scans. CONCLUSION: DaTSCAN SPECT-CT resulted in more accurate quantification, improved image quality, and enabled absolute quantification of extra-striatal regions. More extensive studies are required to establish the full value of absolute quantification for diagnosis and monitoring the progression of neurodegenerative disease, to assess an interplay between DAT and SERT, and to verify whether serotonin and DATs are potentially dysfunctional in obesity.


Asunto(s)
Enfermedades Neurodegenerativas , Nortropanos , Trastornos Parkinsonianos , Humanos , Trastornos Parkinsonianos/diagnóstico por imagen , Nortropanos/metabolismo , Tomografía Computarizada por Rayos X , Tomografía Computarizada de Emisión de Fotón Único/métodos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo
4.
Brain ; 145(12): 4287-4307, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35776111

RESUMEN

Organized meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the CSF of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin-alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior subclinical immunization with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localized overexpression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin + fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on previous myelin oligodendrocyte glycoprotein immunization, the neuronal loss was present irrespective of immunization. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Ratas , Animales , Linfotoxina-alfa/metabolismo , Glicoproteína Mielina-Oligodendrócito , Inflamación/patología , Corteza Cerebral/patología , Meninges , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Factores Inmunológicos/metabolismo
5.
Annu Rev Neurosci ; 45: 581-601, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35508195

RESUMEN

Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.


Asunto(s)
Antidepresivos , Depresión , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Plasticidad Neuronal/fisiología , Neuronas , Sinapsis/fisiología , Transmisión Sináptica/fisiología
6.
Eur J Neurosci ; 55(3): 675-693, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35001440

RESUMEN

Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.


Asunto(s)
Cocaína , Núcleo Accumbens , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Ritmo Circadiano/fisiología , Cocaína/farmacología , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Recompensa , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo
7.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33235333

RESUMEN

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ácido Valproico , Animales , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Manía , Ratones , Ácido Valproico/farmacología
8.
Neuron ; 105(3): 446-463.e13, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31784287

RESUMEN

The limitations of classical drugs have spurred the development of covalently tethered photoswitchable ligands to control neuromodulatory receptors. However, a major shortcoming of tethered photopharmacology is the inability to obtain optical control with an efficacy comparable with that of the native ligand. To overcome this, we developed a family of branched photoswitchable compounds to target metabotropic glutamate receptors (mGluRs). These compounds permit photo-agonism of Gi/o-coupled group II mGluRs with near-complete efficiency relative to glutamate when attached to receptors via a range of orthogonal, multiplexable modalities. Through a chimeric approach, branched ligands also allow efficient optical control of Gq-coupled mGluR5, which we use to probe the spatiotemporal properties of receptor-induced calcium oscillations. In addition, we report branched, photoswitch-fluorophore compounds for simultaneous receptor imaging and manipulation. Finally, we demonstrate this approach in vivo in mice, where photoactivation of SNAP-mGluR2 in the medial prefrontal cortex reversibly modulates working memory in normal and disease-associated states.


Asunto(s)
Optogenética/métodos , Fármacos Fotosensibilizantes/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
9.
J Neurosci ; 39(24): 4657-4667, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30962277

RESUMEN

The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Trastornos Relacionados con Cocaína/genética , Cocaína/farmacología , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Núcleo Accumbens/citología , Sinapsis , Animales , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa , Transmisión Sináptica/efectos de los fármacos
10.
Mol Psychiatry ; 24(11): 1668-1684, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29728703

RESUMEN

The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.


Asunto(s)
Ritmo Circadiano/fisiología , Sirtuina 1/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Cocaína/metabolismo , Condicionamiento Operante/fisiología , Condicionamiento Psicológico/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , NAD/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Oxidación-Reducción , Recompensa , Sirtuina 1/fisiología , Tirosina 3-Monooxigenasa/fisiología , Área Tegmental Ventral/metabolismo
11.
Alcohol Clin Exp Res ; 42(5): 879-888, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29668112

RESUMEN

BACKGROUND: Chronic alcohol intake leads to long-lasting changes in reward- and stress-related neuronal circuitry. The nucleus accumbens (NAc) is an integral component of this circuitry. Here, we investigate the effects of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) on neuronal activity in the NAc and binge-like drinking. METHODS: C57BL/6J mice were stereotaxically injected with AAV2 hSyn-HA hM3Dq, -hM4Di, or -eGFP bilaterally into NAc [core + shell, core or shell]. We measured clozapine-n-oxide (CNO)-induced changes in NAc activity and assessed binge-like ethanol (EtOH) or tastant/fluid intake in a limited access Drinking in the Dark (DID) schedule. RESULTS: We found that CNO increased NAc firing in hM3Dq positive cells and decreased firing in hM4Di cells, confirming the efficacy of these channels to alter neuronal activity both spatially and temporally. Increasing NAc core + shell activity decreased binge-like drinking without altering intake of other tastants. Increasing activity specifically in the NAc core reduced binge-like drinking, and decreasing activity in the NAc core increased drinking. Manipulation of NAc shell activity did not alter DID. Thus, we find that increasing activity in the entire NAc, or just the NAc core is sufficient to decrease binge drinking. CONCLUSIONS: We conclude that the reduction in EtOH drinking is not due to general malaise, altered perception of taste, or reduced calorie-seeking. Furthermore, we provide the first evidence for bidirectional control of NAc core and binge-like drinking. These findings could have promising implications for treatment.


Asunto(s)
Consumo de Bebidas Alcohólicas , Clozapina/análogos & derivados , Ingestión de Líquidos/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Potenciales de Acción/fisiología , Adenoviridae , Animales , Clozapina/farmacología , Femenino , Vectores Genéticos , Ratones , Ratones Transgénicos , Receptor Muscarínico M3/genética , Receptor Muscarínico M4/genética
12.
Neuropsychopharmacology ; 43(2): 435-444, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28857068

RESUMEN

Kv3.1 and Kv3.2 voltage-gated potassium channels are expressed on parvalbumin-positive GABAergic interneurons in corticolimbic brain regions and contribute to high-frequency neural firing. The channels are also expressed on GABAergic neurons of the basal ganglia, substantia nigra, and ventral tegmental area (VTA) where they regulate firing patterns critical for movement control, reward, and motivation. Modulation of Kv3.1 and Kv3.2 channels may therefore have potential in the treatment of disorders in which these systems have been implicated, such as bipolar disorder. Following the recent development of a potassium channel modulator, AUT1-an imidazolidinedione compound that specifically increases currents mediated by Kv3.1 and Kv3.2 channels in recombinant systems-we report that the compound is able to reverse 'manic-like' behavior in two mouse models: amphetamine-induced hyperactivity and ClockΔ19 mutants. AUT1 completely prevented amphetamine-induced hyperactivity in a dose-dependent manner, similar to the atypical antipsychotic, clozapine. Similar efficacy was observed in Kv3.2 knockout mice. In contrast, AUT1 was unable to prevent amphetamine-induced hyperactivity in mice lacking Kv3.1 channels. Notably, Kv3.1-null mice displayed baseline hyperlocomotion, reduced anxiety-like behavior, and antidepressant-like behavior. In ClockΔ19 mice, AUT1 reversed hyperactivity. Furthermore, AUT1 application modulated firing frequency and action potential properties of ClockΔ19 VTA dopamine neurons potentially through network effects. Kv3.1 protein levels in the VTA of ClockΔ19 and WT mice were unaltered by acute AUT1 treatment. Taken together, these results suggest that the modulation of Kv3.1 channels may provide a novel approach to the treatment of bipolar mania.


Asunto(s)
Acatisia Inducida por Medicamentos/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Proteínas CLOCK , Neuronas Dopaminérgicas/efectos de los fármacos , Hidantoínas/farmacología , Piridinas/farmacología , Canales de Potasio Shaw/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Anfetamina/farmacología , Animales , Proteínas CLOCK/genética , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canales de Potasio Shaw/deficiencia
13.
Biol Psychiatry ; 84(11): 817-826, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28780133

RESUMEN

BACKGROUND: Disruptions in circadian rhythms are associated with an increased risk for bipolar disorder. Moreover, studies show that the circadian protein CLOCK (circadian locomotor output cycles kaput) is involved in regulating monoaminergic systems and mood-related behavior. However, the molecular and synaptic mechanisms underlying this relationship remain poorly understood. METHODS: Using ex vivo whole-cell patch-clamp electrophysiology in ClockΔ19 mutant and wild-type mice we characterized alterations in excitatory synaptic transmission, strength, and intrinsic excitability of nucleus accumbens (NAc) neurons. We performed protein crosslinking and Western blot analysis to examine surface and intracellular levels and rhythm of the glutamate receptor subunit, GluA1, in the NAc. Viral-mediated overexpression of Gria1 in the NAc and behavioral assays were also used. RESULTS: Compared with wild-type mice, ClockΔ19 mice display reduced alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated excitatory synaptic responses at NAc medium spiny neurons. These alterations are likely postsynaptic, as presynaptic release of glutamate onto medium spiny neurons is unaltered in mutant mice. Additionally, NAc surface protein levels and the rhythm of GRIA1 are decreased in ClockΔ19 mice diurnally, consistent with reduced functional synaptic response. Furthermore, we observed a significantly hyperpolarized resting membrane potential of ClockΔ19 medium spiny neurons, suggesting lowered intrinsic excitability. Last, overexpression of functional Gria1 in the NAc of mutant mice was able to normalize increased exploratory drive and reward sensitivity behavior when mice are in a manic-like state. CONCLUSIONS: Together, our findings demonstrate that NAc excitatory signaling via Gria1 expression is integral to the effects of Clock gene disruption on manic-like behaviors.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/patología , Proteínas CLOCK/genética , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Trastorno Bipolar/tratamiento farmacológico , Ritmo Circadiano , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/genética , Neuronas/fisiología , Núcleo Accumbens/fisiología , Técnicas de Placa-Clamp , Transmisión Sináptica
14.
Middle East Afr J Ophthalmol ; 25(3-4): 119-125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30765948

RESUMEN

PURPOSE: Comparative clinical study of medically controlled non-severe chronic Primary Angle Closure Glaucoma (PACG) with co-existing cataract surgically managed by phacoemulsification as against combined phacotrabeculectomy. METHODS: This randomized clinical trial was conducted between December 2011 and December 2013. Patients were randomly assigned to Phacoemulsification (PE) and Phacotrabeculectomy (PT) groups for surgery. Intraocular pressure, anti-glaucoma medications, Best Corrected Visual Acuity, anterior chamber angle widening and post-operative complications in both groups were compared after 12 months. RESULTS: There were 46 eyes with PACG in PE group and 45 in PT group. The IOP at 12 months in PE group was 11.5±1.3mmHg and 11.8±1.2mmHg in PT gr. (p = 0.28). The eyes requiring single anti-glaucoma medications at 12months in PE group was 0, PT group was 1 (p = 0. 495). The post op BCVA at 12months in PE group 0.3+-0.12 and 0.33±0.15 in PT group (p = 0.22). 3 cases in PT group required additional intervention whereas no additional intervention was required in PE group and this difference was statistically significant (p = 0.116). CONCLUSION: Phacoemulsification is equally effective in terms of intraocular pressure control and visual outcome as phacotrabeculectomy with better safety and less post-operative complication.


Asunto(s)
Antihipertensivos/uso terapéutico , Catarata/complicaciones , Glaucoma de Ángulo Cerrado/terapia , Presión Intraocular/fisiología , Facoemulsificación/métodos , Trabeculectomía/métodos , Agudeza Visual/fisiología , Catarata/fisiopatología , Enfermedad Crónica , Femenino , Glaucoma de Ángulo Cerrado/complicaciones , Glaucoma de Ángulo Cerrado/fisiopatología , Gonioscopía , Humanos , Masculino , Persona de Mediana Edad , Tonometría Ocular , Resultado del Tratamiento
15.
Front Mol Neurosci ; 10: 360, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163035

RESUMEN

Abnormal circadian rhythms and circadian genes are strongly associated with several psychiatric disorders. Neuronal PAS Domain Protein 2 (NPAS2) is a core component of the molecular clock that acts as a transcription factor and is highly expressed in reward- and stress-related brain regions such as the striatum. However, the mechanism by which NPAS2 is involved in mood-related behaviors is still unclear. We measured anxiety-like behaviors in mice with a global null mutation in Npas2 (Npas2 null mutant mice) and found that Npas2 null mutant mice exhibit less anxiety-like behavior than their wild-type (WT) littermates (in elevated plus maze, light/dark box and open field assay). We assessed the effects of acute or chronic stress on striatal Npas2 expression, and found that both stressors increased levels of Npas2. Moreover, knockdown of Npas2 in the ventral striatum resulted in a similar reduction of anxiety-like behaviors as seen in the Npas2 null mutant mouse. Additionally, we identified Gabra genes as transcriptional targets of NPAS2, found that Npas2 null mutant mice exhibit reduced sensitivity to the GABAa positive allosteric modulator, diazepam and that knockdown of Npas2 reduced Gabra1 expression and response to diazepam in the ventral striatum. These results: (1) implicate Npas2 in the response to stress and the development of anxiety; and (2) provide functional evidence for the regulation of GABAergic neurotransmission by NPAS2 in the ventral striatum.

16.
Front Psychiatry ; 7: 67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148095

RESUMEN

Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3'-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock(-/-) knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3'-UTR SNP affects the expression, function, and stability of CLOCK mRNA.

17.
Alcohol ; 49(4): 341-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25641765

RESUMEN

Addiction is a widespread public health issue with social and economic ramifications. Substance abuse disorders are often accompanied by disruptions in circadian rhythms including sleep/wake cycles, which can exacerbate symptoms of addiction and dependence. Additionally, genetic disturbance of circadian molecular mechanisms can predispose some individuals to substance abuse disorders. In this review, we will discuss how circadian genes can regulate midbrain dopaminergic activity and subsequently, drug intake and reward. We will also suggest future directions for research on circadian genes and drugs of abuse.


Asunto(s)
Alcoholismo/genética , Relojes Circadianos/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/genética , Dopamina/metabolismo , Mesencéfalo/metabolismo , Recompensa , Alcoholismo/metabolismo , Animales , Conducta Adictiva/genética , Conducta Adictiva/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/efectos de los fármacos , Etanol/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Mesencéfalo/efectos de los fármacos , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/metabolismo
18.
Front Psychiatry ; 6: 187, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793129

RESUMEN

Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward-related behavior.

19.
Learn Mem ; 22(1): 47-55, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25512577

RESUMEN

Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs) to the post-synaptic membrane, and is developmentally regulated. How enhanced sensory experience can alter presynaptic release properties in the developing neocortex has not been investigated. Using paired-pulse stimulation at layer 4-2/3 synapses in acute brain slices, we found that presynaptic release probability progressively increases in the spared-whisker barrel column over the first 24 h of SRE. Enhanced release probability can be at least partly attributed to presynaptic NMDA receptors (NMDARs). We find that the influence of presynaptic NMDARs in enhancing EPSC amplitude markedly increases during SRE. This occurs at the same time when recently potentiated synapses become highly susceptible to a NMDAR-dependent form of synaptic depression, during the labile phase of plasticity. Thus, these data show that augmented sensory stimulation can enhance release probability at layer 4-2/3 synapses and enhance the function of presynaptic NMDARs. Because presynaptic NMDARs have been linked to synaptic depression at layer 4-2/3 synapses, we propose that SRE-dependent up-regulation of presynaptic NMDARs is responsible for enhanced synaptic depression during the labile stage of plasticity.


Asunto(s)
Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Presinapticos/metabolismo , Percepción del Tacto/fisiología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones Endogámicos C57BL , Neocórtex/efectos de los fármacos , Neocórtex/crecimiento & desarrollo , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , Estimulación Física , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores Presinapticos/antagonistas & inhibidores , Privación Sensorial/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba , Vibrisas/fisiología
20.
Pain ; 155(12): 2662-2672, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281928

RESUMEN

Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.


Asunto(s)
Fijadores/toxicidad , Formaldehído/toxicidad , Dolor/inducido químicamente , Dolor/patología , Canales Catiónicos TRPV/metabolismo , Animales , Butadienos/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrilos/farmacología , Pirroles/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Ganglio del Trigémino/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Vibrisas/efectos de los fármacos , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...