Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837357

RESUMEN

BACKGROUND: Chestnut flour plays an important role in the production of bread, bakery products, and gluten-free foods. Most of the references in the literature focus on the drying process itself and not on the effects of the drying and milling processes. Moreover, the literature is lacking recommendations regarding optimal moisture content and milling speed, thus motivating the present study. The first aim is to understand the chestnut drying process through an in-depth evaluation of drying kinetics; the second aim is to assess the effects of three different moisture content (2%, 4% and 6%) and three different stone rotational speeds (120, 220 and 320 rpm) on operative milling parameters (flour yield, milling time, energy consumption, temperature increase, average power, specific milling energy), flour particle size distribution, and chestnut flours characteristics. RESULTS: The results show that moisture content and stone rotational speed have statistically-significant effects on milling operative parameters, flour particle size and chestnut flour composition. In particular, stone rotational speed affected almost all the tested variables (mill operative parameters, flour particle size distribution, and flour characteristics). Therefore, as the stone rotational speed increases, energy consumption, average power, specific energy, and damaged starch content significantly increase. CONCLUSION: These findings clearly show that moisture content and stone rotational speed are powerful tools that allow the exploiation of the milling process to modulate the characteristics of the obtained flours. In conclusion, two different approaches for chestnut milling were suggested depending on the type of flour to be produced. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 72(19): 11124-11139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698543

RESUMEN

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation. The quantitative data collected were used for both the characterization and clustering of the cultivars. Sesquiterpenes were the molecules that most characterized the different cultivars, ranging from 3.908 to 38.215 mg/kg; different groups of cultivars were characterized by different groups of sesquiterpenes. Pentene dimers (1.336 and 3.860 mg/kg) and monoterpenes (0.430 and 1.794 mg/kg) showed much lower contents and variability among cultivars. The application of Kruskal-Wallis test-PCA-LDA-HCA to the experimental data allowed defining 4 clusters of cultivars and building a predictive model to classify the samples (94.3% correct classification). The model was further tested on 33 EVOOs, correctly classifying 91% of them.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Olea , Aceite de Oliva , Control de Calidad , Microextracción en Fase Sólida , Terpenos , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Aceite de Oliva/química , Italia , Terpenos/química , Terpenos/análisis , Olea/química , Compuestos Orgánicos Volátiles/química , Quimiometría/métodos , Dimerización
3.
Foods ; 9(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316883

RESUMEN

(1) Background: Recently, a new espresso extraction method, Caffè Firenze, has been developed, which uses gas at operating pressures of 20 bar to obtain abundant, persistent foam. The experiment aimed to evaluate the effect of using six gases (air, argon, nitrogen, carbon dioxide, carbon/nitrogen mix, and nitrous oxide) on the foam and liquid coffee. (2) Methods: Foam volume, persistence, sugar retention time, color, and rheological properties were measured. Volatile organic compounds were also evaluated. Analyses were also carried out on the liquid coffee to determine caffeine and chlorogenic acid concentrations. (3) Results: The analysis of variance revealed significant differences between the gases for all parameters. Multivariate analysis identified three groups of gases: the first comprised air, N2, and Ar; the second CO2 and N2O; and the third comprised samples extracted with CO2/N2 mix. (4) Conclusions: The choice of gas significantly influences the drink's chemical-physical characteristics and is fundamental for product diversification.

4.
Foods ; 9(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086729

RESUMEN

The present study tested the effect of a slight increase in pressure (from 0 to 1 bar) during the fermentation on the wine aroma profile. Fermentations were carried out with a commercial dry yeast on Sangiovese juice in the absence of berry skins. The wine samples fermented under slight overpressure conditions were found to be significantly different from the control samples produced at atmospheric pressure in relation to several chemical compounds. Concentrations of many esters (i.e., isoamyl acetate, ethyl acetate, ethyl hexanoate, hexyl acetate, ethyl dodecanoate, and ethyl tetradecanoate), and acids (i.e., hexanoic acid, octanoic acid, and decanoic acid) increased, while concentrations of two acids (i.e., isobutyric and isovaleric acid) decreased. These differences, notably the higher concentration of esters, are usually associated with a more intense fruity attribute. Triangular sensory tests revealed that the significant chemical differences were also perceivable; hence, introducing a slight pressure increase during the alcoholic fermentation could be a useful tool in managing the aroma profile of wine.

5.
Foods ; 9(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781655

RESUMEN

Filtration is the most widespread stabilisation operation for extra virgin olive oil, preventing microbial and enzymatic changes. However, during the harvest, the workload of olive mills is at its peak. This results in two approaches to filtration: (i) delays it until after harvesting, increasing the risk of degraded oil quality, and (ii) filters it immediately, increasing the workload. The aim of our experiment is to assess the risk of delaying filtration and establish a safe delay time. Changes in the sensory profile and volatile compound contents were evaluated during 30 days in filtered and unfiltered samples. Significant differences were related to filtration: both turbidity grade and microbial contamination; no differences for the legal parameters were found. Two, contrasting, results were obtained with respect to oil quality: (i) the fusty defect, appearing in less than five days in unfiltered oils, leading to the downgrade of the oil's commercial category, and (ii) filtration removing some lipoxygenase volatile compounds. Consequently, a fruity attribute was more pronounced in unfiltered samples until day five of storage; it seems that, from this point, the fusty defect masked a fruity attribute. Hence, filtering within a few days strongly reduced the risk of degraded oil quality compared to a delayed filtration.

6.
Molecules ; 25(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968582

RESUMEN

Veiled extra virgin olive oil (VEVOO) is very attractive on the global market. A study was performed to highlight the role of different amounts of water and microorganisms on the evolution of VEVOO quality during storage, using the selective effects of the application of individual or combined filtration and high hydrostatic pressure (HHP) treatments. Four oil processing trials were carried out in four replicates, resulting in a full factorial design with two independent fixed factors: filtration and HPP treatments. The turbidity of all the olive oil samples was characterized. Furthermore, all the olive oil samples were analysed for legal parameters, volatile organic compounds and phenolic compounds during the storage tests. The microbial contamination in the presence of a high level of water activity (>0.6 Aw) was related to the formation of volatile aroma compounds, which were responsible for the "fusty" sensory defect. Furthermore, high water activity values were related to an increase in the hydrolytic degradation rate of the phenolic compounds. The oil turbidity has to be planned and controlled, starting from adjustment of the water content and application of good manufacturing practices.


Asunto(s)
Aceite de Oliva/química , Fenoles/análisis , Compuestos Orgánicos Volátiles/análisis , Filtración , Contaminación de Alimentos , Almacenamiento de Alimentos , Presión Hidrostática
7.
Food Res Int ; 116: 1327-1335, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716922

RESUMEN

The chemical composition of brewed coffee depends on numerous factors: the beans, post-harvest processing and, finally, the extraction method. In recent decades, numerous coffee-based beverages, obtained using different extraction techniques have entered the market. This study characterizes and compares eight extraction coffee methods from a chemical-physical point of view, starting from the same raw material. Specifically, three types of Espresso, Moka, French Press, and 3 filter coffee that for the first time are reported in the scientific literature Cold Brew, V60, and Aeropress are compared. Physical measurements included the quantification of total dissolved solids, density, pH, conductivity, and viscosity. Chemical analyses identified 15 chlorogenic acids (CGAs): six caffeoylquinic acids, one p-Coumaroylquinic acid, one Feruloylquinic Acid, four Caffeoylquinic lactones, and three Dicaffeoylquinic acids. Maximum caffeine and CGA concentrations were found in Espresso coffees, while Moka and filtered coffees were three to six times less concentrated. The classic Espresso method was most efficient for caffeine and CGA recovery, with a yield almost double that of other methods. Per-cup caffeine and CGAs were higher in Cold Brew than Espresso coffees, as a function of the volume of beverage, which ranged from 30 mL (for espresso) to 120 mL (for filtered coffees). In light of these results, it is not possible to establish how many cups of coffee can be consumed per day without exceeding the recommended doses, since according to the applied brewing method, the content of the bioactive substances varies considerably.


Asunto(s)
Cafeína/análisis , Café/química , Manipulación de Alimentos/métodos , Extractos Vegetales/análisis , Ácido Clorogénico/análisis , Coffea/química , Calor , Concentración de Iones de Hidrógeno , Fitoquímicos/análisis , Presión , Ácido Quínico/análogos & derivados , Ácido Quínico/análisis , Viscosidad
8.
J Sci Food Agric ; 99(1): 391-399, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29888474

RESUMEN

BACKGROUND: Each region of the world has its own methods, protocols, instruments and procedures regarding how to brew coffee. The final result in the cup is strongly affected by the extraction method, and many studies have focused on this subject. However, few studies have investigated slow, cold extraction methods, despite their popularity among baristas. Therefore, the present study aimed to characterize and compare two cold extraction methods: cold brew and cold drip. RESULTS: Physical and chemical analyses were used to describe coffee beverages in terms of pH, total solids, refractive index, density and viscosity. Caffeine and cinnamic acids were quantified using high-performance liquid chromatography (HPLC)/diode array detector and HPLC/mass spectrometry. A sensory evaluation included aroma, flavor and textural attributes. CONCLUSIONS: Significant differences were found in the chemical and physical parameters, both between and within the two methods, as a function of the extraction temperature and contact time. Similarly, the sensory evaluation found differences in flavor profiles, as measured in terms of bitterness, sweetness, sourness and global intensity. © 2018 Society of Chemical Industry.


Asunto(s)
Coffea/química , Culinaria/métodos , Cromatografía Líquida de Alta Presión , Café/química , Aromatizantes/análisis , Humanos , Espectrometría de Masas , Semillas/química , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...