Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 10: 154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28596722

RESUMEN

Complexin is a small soluble presynaptic protein that interacts with neuronal SNARE proteins in order to regulate synaptic vesicle exocytosis. While the SNARE-binding central helix of complexin is required for both the inhibition of spontaneous fusion and the facilitation of synchronous fusion, the disordered C-terminal domain (CTD) of complexin is specifically required for its inhibitory function. The CTD of worm complexin binds to membranes via two distinct motifs, one of which undergoes a membrane curvature dependent structural transition that is required for efficient inhibition of neurotransmitter release, but the conformations of the membrane-bound motifs remain poorly characterized. Visualizing these conformations is required to clarify the mechanisms by which complexin membrane interactions regulate its function. Here, we employ optical and magnetic resonance spectroscopy to precisely define the boundaries of the two CTD membrane-binding motifs and to characterize their conformations. We show that the curvature dependent amphipathic helical motif features an irregular element of helical structure, likely a pi-bulge, and that this feature is important for complexin inhibitory function in vivo.

2.
Front Mol Neurosci ; 10: 146, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603484

RESUMEN

Complexin is a critical presynaptic protein that regulates both spontaneous and calcium-triggered neurotransmitter release in all synapses. Although the SNARE-binding central helix of complexin is highly conserved and required for all known complexin functions, the remainder of the protein has profoundly diverged across the animal kingdom. Striking disparities in complexin inhibitory activity are observed between vertebrate and invertebrate complexins but little is known about the source of these differences or their relevance to the underlying mechanism of complexin regulation. We found that mouse complexin 1 (mCpx1) failed to inhibit neurotransmitter secretion in Caenorhabditis elegans neuromuscular junctions lacking the worm complexin 1 (CPX-1). This lack of inhibition stemmed from differences in the C-terminal domain (CTD) of mCpx1. Previous studies revealed that the CTD selectively binds to highly curved membranes and directs complexin to synaptic vesicles. Although mouse and worm complexin have similar lipid binding affinity, their last few amino acids differ in both hydrophobicity and in lipid binding conformation, and these differences strongly impacted CPX-1 inhibitory function. Moreover, function was not maintained if a critical amphipathic helix in the worm CPX-1 CTD was replaced with the corresponding mCpx1 amphipathic helix. Invertebrate complexins generally shared more C-terminal similarity with vertebrate complexin 3 and 4 isoforms, and the amphipathic region of mouse complexin 3 significantly restored inhibitory function to worm CPX-1. We hypothesize that the CTD of complexin is essential in conferring an inhibitory function to complexin, and that this inhibitory activity has been attenuated in the vertebrate complexin 1 and 2 isoforms. Thus, evolutionary changes in the complexin CTD differentially shape its synaptic role across phylogeny.

3.
J Cell Sci ; 128(10): 1887-900, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25908860

RESUMEN

The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.


Asunto(s)
Daño del ADN , Leucemia Promielocítica Aguda/genética , Proteínas Nucleares/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Reparación del ADN , Humanos , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Transducción de Señal , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
4.
J Biol Chem ; 289(14): 9639-50, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24532794

RESUMEN

Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion. A single point mutation (L348R) within helix 12 selectively abolishes VAMP2 binding and the stimulatory function of Munc18-1 in membrane fusion. In contrast, targeting a natural switch site (P335A) at the start of helix 12, which can result in an extended α-helical conformation, further accelerates lipid-mixing. Together with structural modeling, the data suggest that helix 12 provides a folding template for VAMP2, accelerating SNAREpin assembly and membrane fusion. Analogous SEC1/Munc18-SNARE interactions at other transport steps may provide a general mechanism to drive lipid bilayer merger. At the neuronal synapse, Munc18-1 may convert docked synaptic vesicles into a readily releasable pool.


Asunto(s)
Proteínas Munc18/química , Proteína 2 de Membrana Asociada a Vesículas/química , Sustitución de Aminoácidos , Animales , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
5.
J Biol Chem ; 287(37): 31041-9, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22810233

RESUMEN

Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Sistema Libre de Células , Ratones , Proteínas Munc18/genética , Ratas , Proteínas SNARE/genética , Membranas Sinápticas/genética , Vesículas Sinápticas/genética , Sinaptotagmina I/genética
6.
EMBO J ; 31(15): 3270-81, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705946

RESUMEN

Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Calcio/farmacología , Proteínas del Tejido Nervioso/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Humanos , Técnicas In Vitro , Fusión de Membrana/efectos de los fármacos , Modelos Biológicos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Sinaptotagmina I/fisiología , Factores de Tiempo , Liposomas Unilamelares/metabolismo
7.
Crit Rev Food Sci Nutr ; 49(9): 782-99, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20443159

RESUMEN

Resveratrol, a red wine constituent, has been known for its cardioprotective effects. Recent data give ample evidence that resveratrol can act as a chemopreventive agent as well. Tumor initation, promotion, and progression are affected by resveratrol via multiple pathways, which are discussed in this review. Resveratrol has anti-inflammatory effects by counteracting NF-kappa B and AP-1 transcription and can prevent bioactivation of procarcinogens by interacting with drug metabolizing enzymes. Furthermore, resveratrol exerts antioxidant activities, hence contributing to the prevention of tumor initiation. Growing or metastasizing carcinomas are inhibited by resveratrol through prevention of angiogenesis by inhibiting VEGF and matrix metalloproteases. Induction of apoptosis and cell cycle arrest, important mechanisms for cancer therapy, are stimulated by resveratrol through different mechanisms, e.g., activation of p53 and modulation of cell cycle proteins. Although there has been remarkable evidence for resveratrol as a potent chemopreventive agent in vitro, it seems that the low bioavailability of resveratrol in humans could interfere with a successful in vivo treatment. Nevertheless, resveratrol offers two major advantages over conventional chemotherapy. The cytotoxic effects of resveratrol on healthy cells can be neglected, and, as several pathways leading to chemotherapeutic effects are activated by resveratrol, chemoresistance-inducing mutations in cancer cells can be overcome.


Asunto(s)
Anticarcinógenos/uso terapéutico , Neoplasias/prevención & control , Estilbenos/uso terapéutico , Vino , Inhibidores de la Angiogénesis/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Humanos , Resveratrol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...