Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JACC Basic Transl Sci ; 8(3): 239-254, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034280

RESUMEN

Intermittent fasting (IF) extends life span via pleotropic mechanisms, but one important molecular mediator is adenosine monophosphate-activated protein kinase (AMPK). AMPK enhances lipid metabolism and modulates microtubule dynamics. Dysregulation of these molecular pathways causes right ventricular (RV) failure in patients with pulmonary arterial hypertension. In rodent pulmonary arterial hypertension, IF activates RV AMPK, which restores mitochondrial and peroxisomal morphology and restructures mitochondrial and peroxisomal lipid metabolism protein regulation. In addition, IF increases electron transport chain protein abundance and activity in the right ventricle. Echocardiographic and hemodynamic measures of RV function are positively associated with fatty acid oxidation and electron transport chain protein levels. IF also combats heightened microtubule density, which normalizes transverse tubule structure.

2.
Autophagy ; 12(10): 1759-1775, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27487390

RESUMEN

In humans, loss of TBC1D20 (TBC1 domain family, member 20) protein function causes Warburg Micro syndrome 4 (WARBM4), an autosomal recessive disorder characterized by congenital eye, brain, and genital abnormalities. TBC1D20-deficient mice exhibit ocular abnormalities and male infertility. TBC1D20 is a ubiquitously expressed member of the family of GTPase-activating proteins (GAPs) that increase the intrinsically slow GTP-hydrolysis rate of small RAB-GTPases when bound to GTP. Biochemical studies have established TBC1D20 as a GAP for RAB1B and RAB2A. However, the cellular role of TBC1D20 still remains elusive, and there is little information about how the functional loss of TBC1D20 causes clinical manifestations in WARBM4-affected children. Here we evaluate the role of TBC1D20 in cells carrying a null mutant allele, as well as TBC1D20-deficient mice, which display eye and testicular abnormalities. We demonstrate that TBC1D20, via its RAB1B GAP function, is a key regulator of autophagosome maturation, a process required for maintenance of autophagic flux and degradation of autophagic cargo. Our results provide evidence that TBC1D20-mediated autophagosome maturation maintains lens transparency by mediating the removal of damaged proteins and organelles from lens fiber cells. Additionally, our results show that in the testes TBC1D20-mediated maturation of autophagosomes is required for autophagic flux, but is also required for the formation of acrosomes. Furthermore TBC1D20-deficient mice, while not mimicking severe developmental brain abnormalities identified in WARBM4 affected children, display disrupted neuronal autophagic flux resulting in adult-onset motor dysfunction. In summary, we show that TBC1D20 has an essential role in the maturation of autophagosomes and a defect in TBC1D20 function results in eye, testicular, and neuronal abnormalities in mice implicating disrupted autophagy as a mechanism that contributes to WARBM4 pathogenesis.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Proteínas de Unión al GTP rab1/metabolismo , Acrosoma/metabolismo , Acrosoma/patología , Animales , Autofagosomas/ultraestructura , Catarata/metabolismo , Catarata/patología , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Cristalino/metabolismo , Cristalino/patología , Masculino , Ratones , Modelos Biológicos , Actividad Motora , Testículo/patología , Ubiquitinación , Proteínas de Unión al GTP rab1/deficiencia
3.
J Immunol ; 190(8): 3849-53, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23487428

RESUMEN

A controversy has recently emerged regarding the location of the cellular pool of the adapter linker for activation of T cells (LAT) that participates in propagation of signals downstream of the TCR. In one model phosphorylation and direct recruitment of cell surface LAT to activation-induced microclusters is critical for T cell activation, whereas in the other model vesicular, but not surface, LAT participates in these processes. By using a chimeric version of LAT that can be tracked via an extracellular domain, we provide evidence that LAT located at the cell surface can be recruited efficiently to activation-induced microclusters within seconds of TCR engagement. Importantly, we also demonstrate that this pool of LAT at the plasma membrane is rapidly phosphorylated. Our results provide support for the model in which the cell utilizes LAT from the cell surface for rapid responses to TCR stimulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/fisiología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Linfocitos T CD4-Positivos/metabolismo , Humanos , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Células Jurkat , Activación de Linfocitos/genética , Proteínas de la Membrana/genética , Fosforilación/genética , Fosforilación/inmunología , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...