Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 15(2): 531-9, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26751275

RESUMEN

When Caenorhabditis elegans encounters unfavorable growth conditions, it enters the dauer stage, an alternative L3 developmental period. A dauer larva resumes larval development to the normal L4 stage by uncharacterized postdauer reprogramming (PDR) when growth conditions become more favorable. During this transition period, certain heterochronic genes involved in controlling the proper sequence of developmental events are known to act, with their mutations suppressing the Muv (multivulva) phenotype in C. elegans. To identify the specific proteins in which the Muv phenotype is highly suppressed, quantitative proteomic analysis with iTRAQ labeling of samples obtained from worms at L1 + 30 h (for continuous development [CD]) and dauer recovery +3 h (for postdauer development [PD]) was carried out to detect changes in protein abundance in the CD and PD states of both N2 and lin-28(n719). Of the 1661 unique proteins identified with a < 1% false discovery rate at the peptide level, we selected 58 proteins exhibiting ≥2-fold up-regulation or ≥2-fold down-regulation in the PD state and analyzed the Gene Ontology terms. RNAi assays against 15 selected up-regulated genes showed that seven genes were predicted to be involved in higher Muv phenotype (p < 0.05) in lin-28(n791), which is not seen in N2. Specifically, two genes, K08H10.1 and W05H9.1, displayed not only the highest rate (%) of Muv phenotype in the RNAi assay but also the dauer-specific mRNA expression, indicating that these genes may be required for PDR, leading to the very early onset of dauer recovery. Thus, our proteomic approach identifies and quantitates the regulatory proteins potentially involved in PDR in C. elegans, which safeguards the overall lifecycle in response to environmental changes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Marcaje Isotópico/métodos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Estadios del Ciclo de Vida , Mutación , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Plant J ; 52(6): 1140-53, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17971039

RESUMEN

Leaf senescence is the final stage of leaf development and is finely regulated via a complex genetic regulatory network incorporating both developmental and environmental factors. In an effort to identify negative regulators of leaf senescence, we screened activation-tagged Arabidopsis lines for mutants that exhibit a delayed leaf senescence phenotype. One of the mutants (ore7-1D) showed a highly significant delay of leaf senescence in the heterozygous state, leading to at least a twofold increase in leaf longevity. The activated gene (ORE7/ESC) encoded a protein with an AT-hook DNA-binding motif; such proteins are known to co-regulate transcription of genes through modification of chromatin architecture. We showed that ORE7/ESC, in addition to binding to a plant AT-rich DNA fragment, could also modify the chromatin architecture, as illustrated by an altered distribution of a histone-GFP fusion protein in the nucleus of the mutant. Globally altered gene expression, shown by microarray analysis, also indicated that activation of ORE7/ESC results in a younger condition in the mutant leaves. We propose that ectopically expressed ORE7/ESC is negatively regulating leaf senescence and suggest that the resulting chromatin alteration may have a role in controlling leaf longevity. Interestingly, activation of ORE7/ESC also led to a highly extended post-harvest storage life.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/metabolismo , Hojas de la Planta/genética , Secuencias AT-Hook/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Plant J ; 34(2): 161-71, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12694592

RESUMEN

Light is a critical environmental factor that influences almost all developmental aspects of plants, including seed germination, seedling morphogenesis, and transition to reproductive growth. Plants have therefore developed an intricate network of mechanisms to perceive and process environmental light information. To further characterize the molecular basis of light-signaling processes in plants, we screened an activation tagging pool of Arabidopsis for altered photoresponses. A dominant mutation, cog1-D, attenuated various red (R) and far-red (FR) light-dependent photoresponses. The mutation was caused by overexpression of a gene encoding a member of the Dof family of transcription factors. The photoresponses in Arabidopsis were inversely correlated with the expression levels of COG1 mRNA. When the COG1 gene was overexpressed in transgenic plants, the plants exhibited hyposensitive responses to R and FR light in a manner inversely dependent on COG1 mRNA levels. On the other hand, transgenic lines expressing antisense COG1 were hypersensitive to R and FR light. Expression of the COG1 gene is light inducible and requires phytochrome A (phyA) for FR light-induced expression and phytochrome B (phyB) for R light-induced expression. Thus, the COG1 gene functions as a negative regulator in both the phyA- and phyB-signaling pathways. We suggest that these phytochromes positively regulate the expression of COG1, a negative regulator, as a mechanism for fine tuning the light-signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fitocromo/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Antocianinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Dominantes/genética , Luz , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Transducción de Señal/efectos de la radiación , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...