Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2182, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467638

RESUMEN

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel. Our study reveals how extended hydrophobic sequences at the termini of substrate proteins are recognized by Doa10 as a signal for quality control.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo
2.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260251

RESUMEN

Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its well-defined degron Deg1. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel.

3.
Nature ; 621(7979): 620-626, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37344598

RESUMEN

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Asunto(s)
Mitocondrias , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopía por Crioelectrón , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/ultraestructura , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/ultraestructura
4.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169959

RESUMEN

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
5.
Curr Opin Struct Biol ; 79: 102531, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36724561

RESUMEN

P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.


Asunto(s)
Adenosina Trifosfatasas , Retículo Endoplásmico , Humanos , Adenosina Trifosfatasas/química , Especificidad por Sustrato , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35940906

RESUMEN

The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas
7.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007018

RESUMEN

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Asunto(s)
Colesterol , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Mol Cell ; 81(22): 4635-4649.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34715013

RESUMEN

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.


Asunto(s)
Poliaminas/química , ATPasas de Translocación de Protón/química , Animales , Transporte Biológico , Catálisis , Microscopía por Crioelectrón , Citosol/metabolismo , Humanos , Lípidos/química , Lisosomas/química , Simulación de Dinámica Molecular , Enfermedad de Parkinson/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Spodoptera
9.
Nat Struct Mol Biol ; 28(2): 162-172, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398175

RESUMEN

Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel. Post-translational transport requires two additional proteins, Sec62 and Sec63, but their functions are poorly defined. In the present study, we determined cryo-electron microscopy (cryo-EM) structures of several variants of Sec61-Sec62-Sec63 complexes from Saccharomyces cerevisiae and Thermomyces lanuginosus and show that Sec62 and Sec63 induce opening of the Sec61 channel. Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel inactive. We further show that the lateral gate of Sec61 must first be partially opened by interactions between Sec61 and Sec63 in cytosolic and luminal domains, a simultaneous disruption of which completely closes the channel. The structures and molecular dynamics simulations suggest that Sec62 may also prevent lipids from invading the channel through the open lateral gate. Our study shows how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-translational protein translocation.


Asunto(s)
Eurotiales/metabolismo , Proteínas de Choque Térmico , Proteínas de Transporte de Membrana , Modelos Moleculares , Canales de Translocación SEC , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Science ; 369(6511)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973005

RESUMEN

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Retículo Endoplásmico/enzimología , Membranas Mitocondriales/enzimología , ATPasas Tipo P/química , Proteínas de Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Células HeLa , Humanos , ATPasas Tipo P/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
11.
Nat Struct Mol Biol ; 26(12): 1158-1166, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740857

RESUMEN

Nearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria after synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. We have determined high-resolution cryo-EM structures of the core TOM complex from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry: pore-forming ß-barrel protein Tom40 and four auxiliary α-helical transmembrane proteins. The pore of each Tom40 has an overall negatively charged inner surface attributed to multiple functionally important acidic patches. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the detailed molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
12.
Nat Commun ; 10(1): 2872, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253804

RESUMEN

The Sec61/SecY channel allows the translocation of many proteins across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. In bacteria, most secretory proteins are transported post-translationally through the SecY channel by the SecA ATPase. How a polypeptide is moved through the SecA-SecY complex is poorly understood, as structural information is lacking. Here, we report an electron cryo-microscopy (cryo-EM) structure of a translocating SecA-SecY complex in a lipid environment. The translocating polypeptide chain can be traced through both SecA and SecY. In the captured transition state of ATP hydrolysis, SecA's two-helix finger is close to the polypeptide, while SecA's clamp interacts with the polypeptide in a sequence-independent manner by inducing a short ß-strand. Taking into account previous biochemical and biophysical data, our structure is consistent with a model in which the two-helix finger and clamp cooperate during the ATPase cycle to move a polypeptide through the channel.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Cristalización , Escherichia coli , Geobacillus/metabolismo , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas , Canales de Translocación SEC/genética , Proteína SecA
13.
Science ; 363(6422): 84-87, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30545845

RESUMEN

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo-electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61's lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


Asunto(s)
Retículo Endoplásmico/química , Proteínas de Choque Térmico/química , Proteínas de Transporte de Membrana/química , Canales de Translocación SEC/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Ribosomas/química
14.
Elife ; 72018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29809153

RESUMEN

CLC channels mediate passive Cl- conduction, while CLC transporters mediate active Cl- transport coupled to H+ transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl- conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl- at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl- affinity distinguish CLC channels and transporters.


Asunto(s)
Canales de Cloruro/química , Cloruros/metabolismo , Ácido Glutámico/metabolismo , Activación del Canal Iónico , Sustitución de Aminoácidos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Humanos , Modelos Moleculares , Mutación , Conformación Proteica
15.
Annu Rev Cell Dev Biol ; 33: 369-390, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28564553

RESUMEN

Many proteins are translocated across the endoplasmic reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes. These proteins use hydrophobic signal sequences or transmembrane (TM) segments to trigger their translocation through the protein-conducting Sec61/SecY channel. Substrates are first directed to the channel by cytosolic targeting factors, which use hydrophobic pockets to bind diverse signal and TM sequences. Subsequently, these hydrophobic sequences insert into the channel, docking into a groove on the outside of the lateral gate of the channel, where they also interact with lipids. Structural data and biochemical experiments have elucidated how channel partners, the ribosome in cotranslational translocation, and the eukaryotic ER chaperone BiP or the prokaryotic cytosolic SecA ATPase in posttranslational translocation move polypeptides unidirectionally across the membrane. Structures of auxiliary components of the bacterial translocon, YidC and SecD/F, provide additional insight. Taken together, these recent advances result in mechanistic models of protein translocation.


Asunto(s)
Transporte de Proteínas , Animales , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Señales de Clasificación de Proteína
16.
Nature ; 541(7638): 500-505, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28002411

RESUMEN

CLC proteins transport chloride (Cl-) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl- ions passively, whereas others are secondary active transporters that exchange two Cl- ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl- transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl- passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl-/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl- down its electrochemical gradient.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Microscopía por Crioelectrón , Animales , Células CHO , Bovinos , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Cricetulus , Citosol/metabolismo , Transporte Iónico , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Docilidad , Porosidad , Multimerización de Proteína , Protones
17.
Nature ; 531(7594): 395-399, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26950603

RESUMEN

Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 Å) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Canales de Translocación SEC , Proteína SecA
18.
Nature ; 506(7486): 102-6, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24153188

RESUMEN

Many secretory proteins are targeted by signal sequences to a protein-conducting channel, formed by prokaryotic SecY or eukaryotic Sec61 complexes, and are translocated across the membrane during their synthesis. Crystal structures of the inactive channel show that the SecY subunit of the heterotrimeric complex consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces the lipid phase. The closed channel has an empty cytoplasmic funnel and an extracellular funnel that is filled with a small helical domain, called the plug. During initiation of translocation, a ribosome-nascent chain complex binds to the SecY (or Sec61) complex, resulting in insertion of the nascent chain. However, the mechanism of channel opening during translocation is unclear. Here we have addressed this question by determining structures of inactive and active ribosome-channel complexes with cryo-electron microscopy. Non-translating ribosome-SecY channel complexes derived from Methanocaldococcus jannaschii or Escherichia coli show the channel in its closed state, and indicate that ribosome binding per se causes only minor changes. The structure of an active E. coli ribosome-channel complex demonstrates that the nascent chain opens the channel, causing mostly rigid body movements of the amino- and carboxy-terminal halves of SecY. In this early translocation intermediate, the polypeptide inserts as a loop into the SecY channel with the hydrophobic signal sequence intercalated into the open lateral gate. The nascent chain also forms a loop on the cytoplasmic surface of SecY rather than entering the channel directly.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/química , Methanocaldococcus/química , Biosíntesis de Proteínas , Ribosomas/diagnóstico por imagen , Ribosomas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Methanocaldococcus/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ribosomas/química , Canales de Translocación SEC , Ultrasonografía
19.
J Mol Biol ; 425(16): 2940-54, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23707406

RESUMEN

In all cells, ATP-dependent proteases play central roles in the controlled degradation of short-lived regulatory or misfolded proteins. A hallmark of these enzymes is that proteolytic active sites are sequestered within a compartmentalized space, which is accessible to substrates only when they are fed into the cavity by protein-unfolding ATPases. HslVU is a prototype of such enzymes, consisting of the hexameric HslU ATPase and the dodecameric HslV protease. HslV forms a barrel-shaped proteolytic chamber with two constricted axial pores. Here, we report that structural alterations of HslV's pore motif dramatically affect the proteolytic activities of both HslV and HslVU complexes. Mutations of a conserved pore residue in HslV (Leu88 to Ala, Gly, or Ser) led to a tighter binding between HslV and HslU and a dramatic stimulation of both the proteolytic and ATPase activities. Furthermore, the HslV mutants alone showed a marked increase of basal hydrolytic activities toward small peptides and unstructured proteins. A synthetic peptide of the HslU C-terminal tail further stimulated the proteolytic activities of these mutants, even allowing degradation of certain folded proteins in the absence of HslU. Moreover, expression of the L88A mutant in Escherichia coli inhibited cell growth, suggesting that HslV pore mutations dysregulate the protease through relaxing the pore constriction, which normally prevents essential cellular proteins from random degradation. Consistent with these observations, an X-ray crystal structure shows that the pore loop of L88A-HslV is largely disordered. Collectively, these results suggest that substrate degradation by HslV is controlled by gating of its pores.


Asunto(s)
Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Cristalografía por Rayos X , Endopeptidasa Clp/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas Mutantes/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteolisis
20.
J Cell Biol ; 198(5): 881-93, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22927464

RESUMEN

The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Multimerización de Proteína , Transporte de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Canales de Translocación SEC , Proteína SecA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...