Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
ACS Appl Mater Interfaces ; 15(39): 45539-45548, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713436

RESUMEN

Fluorescent dyes have garnered significant attention as theranostic platforms owing to their inherent characteristics. In this study, we present the discovery of Medical Fluorophore 33 (MF33), a novel and potent theranostic agent with a phenaleno-isoquinolinium salt structure that can serve as a cancer therapeutic strategy. The synthesis of MF33 is readily achievable through a simple Rh(III)-catalyzed reaction. Moreover, MF33 displayed strong fluorescence signals, excellent microsomal stability, and high biocompatibility in vivo. It induces significant apoptosis in cancer cells via the p53/p21/caspase-3 signaling pathway, leading to selective cytotoxicity in various cancer cells. In vivo fluorescence imaging with MF33 enabled the visualization of sentinel lymph nodes in living mice. Notably, repeated intraperitoneal administration of MF33 resulted in antitumor activity in mice with colorectal cancer. Collectively, our findings suggest that phenaleno-isoquinolinium salt-based MF33 is a viable theranostic agent for biomedical imaging and cancer treatment.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Animales , Ratones , Colorantes Fluorescentes/química , Medicina de Precisión , Estudios de Factibilidad , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
3.
Toxicol Res ; 37(1): 25-33, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33489855

RESUMEN

Gastric cancer is the fifth leading cause of cancer and a global public health problem. 5-Fluorouracil (5-FU) is the primary drug chosen for the treatment of advanced gastric cancer, but acquired cancer drug resistance limits its effectiveness and clinical use. Proliferation assays showed that a gastric carcinoma cell line, AGS and 5-FU-resistant AGS cells (AGS FR) treated with 3-100 µM 5-FU for 48 h or 72 h showed different sensitivities to 5-FU. Immunoblot assay demonstrated that AGS FR cells expressed more COX-2 and PGE2-cognated receptor EP2 than AGS cells. AGS FR cells considerably produced PGE2 than AGS upon stimulation with 5-FU. These results suggest that COX-2 expression is associated with 5-FU resistance. Unlike AGS FR cells, AGS cells showed increased levels of both cleaved caspase-3 and Bax following 5-FU treatment. Treatment of cells with the COX-2 selective inhibitor celecoxib induced cell death of AGS FR cells in a time- and concentration-dependent manner. FACS analysis showed that celecoxib at high doses caused apoptotic cell death, demonstrating a concentration-dependent increase in the cell populations undergoing early apoptosis and late apoptosis. This apoptotic induction was strongly supported by the expression profiles of apoptosis- and survival-associated proteins in response to celecoxib; pro-apoptotic cellular proteins increased while expressions of COX-2 and p-Akt were downregulated in a concentration-dependent manner. An increase in PTEN expression was accompanied with downregulation of p-Akt. Based on the data that downregulation of COX-2 was correlated with the concentrations of celecoxib, COX-2 may play a key role in celecoxib-induced cell death of AGS FR cells. Butaprost, the EP2 agonist, promoted proliferative activity of AGS FR cells in a concentration-dependent manner compared with AGS cells. In cells exposed to butaprost, expressions of COX-2 and p-Akt were increased in a concentration-dependent manner with concomitantly reduced PTEN levels. Taken together, 5-FU-resistance in gastric cancer is correlated with COX-2 expression, and therefore the selective inhibition of COX-2 leads to suppression of cell proliferation of AGS FR cells. Modulation of COX-2 expression and its catalytic activity may be a potential therapeutic strategy to overcome 5-FU-resistant gastric cancer.

4.
Biomol Ther (Seoul) ; 29(1): 64-72, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32843585

RESUMEN

Renal cell carcinoma (RCC) is likely to metastasize to other organs, and is often resistant to conventional chemotherapies. Thymoquinone (TQ), a phytochemical derived from the seeds of Nigella sativa, has been shown to inhibit migration and metastasis in various cancers. In this study, we assessed the effect of TQ on the migratory activity of human RCC Caki-1 cells. We found that treatment with TQ reduced the proteolytic activity of matrix metalloproteinase-9 (MMP-9) in Caki-1 cells. TQ significantly repressed prostaglandin E2 (PGE2) production, its EP2 receptor expression as well as the activation of Akt and p38, the wellknown upstream signal proteins of MMP-9. In addition, treatment with butaprost, a PGE2 agonist, also induced MMP-9 activity and migration/invasion in Caki-1 cells. Moreover, pharmacological inhibitors of PI3K/Akt and p38 remarkably attenuated butaprostinduced Caki-1 cell migration and invasion, implying that activation of PI3K/Akt and p38 is a bridge between the PGE2-EP2 axis and MMP-9-dependent migration and invasion. Taken together, these data suggest that TQ is a promising anti-metastatic drug to treat advanced and metastatic RCC.

5.
Anticancer Res ; 39(7): 3661-3667, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262892

RESUMEN

BACKGROUND/AIM: To explore the possibility of a selective small-molecule ß-catenin inhibitor, CWP232228, as a potential therapeutic drug in the treatment of colorectal cancer (CRC). MATERIALS AND METHODS: The effect of CWP2228 on HCT116 cells was analysed in vitro via flow cytometry, western immunoblotting, and luciferase reporter assays. NOD-scid IL2Rgammanull mice were employed for an in vivo xenograft study to validate the in vitro studies. RESULTS: CWP232228 treatment decreased the promoter activity and nuclear expression of ß-catenin and induced a significant cytotoxic effect in HCT116 cells. CWP232228 treatment induced apoptosis and cell-cycle arrest in the G1 phase of the cell cycle. Furthermore, CWP232228 decreased the expression of aurora kinase A, c-Myc, cyclin D1 and microphthalmia-associated transcription factor. Lastly, CWP232228 also inhibited the growth of xenografted colon cancer cells in mice. CONCLUSION: Collectively, CWP232228 may be used as a potential therapeutic drug in CRC.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Azabiciclo/farmacología , Neoplasias del Colon/metabolismo , Organofosfatos/farmacología , beta Catenina/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Compuestos de Azabiciclo/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Células HCT116 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Organofosfatos/uso terapéutico , Carga Tumoral/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
6.
Oncol Rep ; 38(1): 575-583, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28560439

RESUMEN

Isoliquiritigenin (ISL) is a flavonoid with chalcone structure that has been noted in licorice and shallot, which are generally used in traditional Chinese medicine. ISL has demonstrated various pharmacological effects including antioxidant, anti-inflammatory and antitumor activity. However, the molecular mechanisms underlying the anticancer effects of ISL remain poorly understood. The present study revealed that ISL significantly decreased viability and induced apoptosis in human renal carcinoma Caki cells. The ISL-induced apoptosis was associated with the cleavage of caspase-9, -7 and -3, and that of PARP. Moreover, ISL increased the expression of pro-apoptotic protein Bax and diminished the expression of anti-apoptotic protein Bcl-2, and Bcl-xl, thereby increasing cytochrome c release. Treatment of cells with ISL also induced the expression of p53 through downregulation of murine double minute 2 (Mdm2). Furthermore, ISL generated reactive oxygen species (ROS), and pretreatment with ROS scavenger N-acetyl cysteine (NAC) and NADPH oxidase inhibitor diphenyleneiodonium abrogated the ISL-induced apoptosis. One of the key oncogenic signaling pathways is mediated through signal transducer and activator of transcription 3 (STAT3), which promotes abnormal cell proliferation. Incubation of cells with ISL markedly diminished phosphorylation and DNA binding activity of STAT3, and reduced expression of STAT3 responsive gene products, such as cyclin D1 and D2. ISL also attenuated constitutive phosphorylation of upstream kinase, Janus-activated kinase 2 (Jak2). Pretreatment with NAC abrogated the inhibitory effect of ISL on activation of STAT3 and blocked the cleavage of caspase-9, -7 and -3, and that of PARP in Caki cells. Taken together, the present study provides the first report that ISL induces apoptosis in Caki cells via generation of ROS, which causes induction of p53 and inhibition of the STAT3 signaling pathway.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Chalconas/farmacología , Neoplasias Renales/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Acetilcisteína/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chalconas/uso terapéutico , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Regulación hacia Abajo , Humanos , Janus Quinasa 2/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Compuestos Onio/farmacología , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...