Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 15(2): e1804303, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30548400

RESUMEN

Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self-powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built-in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic-driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2 ) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy-efficient sensors, providing an important advancement for future ubiquitous sensing.

2.
Hepatology ; 68(4): 1331-1346, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29251796

RESUMEN

Obesity commonly leads to hepatic steatosis, which often provokes lipotoxic injuries to hepatocytes that cause nonalcoholic steatohepatitis (NASH). NASH, in turn, is associated with the accumulation of insoluble protein aggregates that are composed of ubiquitinated proteins and ubiquitin adaptor p62/sequestosome 1 (SQSTM1). Formation of p62 inclusions in hepatocytes is the critical marker that distinguishes simple fatty liver from NASH and predicts a poor prognostic outcome for subsequent liver carcinogenesis. However, the molecular mechanism by which lipotoxicity induces protein aggregation is currently unknown. Here, we show that, upon saturated fatty acid-induced lipotoxicity, TANK binding kinase 1 (TBK1) is activated and phosphorylates p62. TBK1-mediated p62 phosphorylation is important for lipotoxicity-induced aggregation of ubiquitinated proteins and formation of large protein inclusions in hepatocytes. In addition, cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), upstream regulators of TBK1, are involved in lipotoxic activation of TBK1 and subsequent p62 phosphorylation in hepatocytes. Furthermore, TBK1 inhibition prevented formation of ubiquitin-p62 aggregates not only in cultured hepatocytes, but also in mouse models of obesity and NASH. CONCLUSION: These results suggest that lipotoxic activation of TBK1 and subsequent p62 phosphorylation are critical steps in the NASH pathology of protein inclusion accumulation in hepatocytes. This mechanism can provide an explanation for how hypernutrition and obesity promote the development of severe liver pathologies, such as steatohepatitis and liver cancer, by facilitating the formation of p62 inclusions. (Hepatology 2018).


Asunto(s)
Autofagia/genética , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/genética , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biopsia con Aguja , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/genética , Valores de Referencia
4.
Autophagy ; 11(8): 1358-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26086452

RESUMEN

Autophagy is an essential process for eliminating ubiquitinated protein aggregates and dysfunctional organelles. Defective autophagy is associated with various degenerative diseases such as Parkinson disease. Through a genetic screening in Drosophila, we identified CG11148, whose product is orthologous to GIGYF1 (GRB10-interacting GYF protein 1) and GIGYF2 in mammals, as a new autophagy regulator; we hereafter refer to this gene as Gyf. Silencing of Gyf completely suppressed the effect of Atg1-Atg13 activation in stimulating autophagic flux and inducing autophagic eye degeneration. Although Gyf silencing did not affect Atg1-induced Atg13 phosphorylation or Atg6-Pi3K59F (class III PtdIns3K)-dependent Fyve puncta formation, it inhibited formation of Atg13 puncta, suggesting that Gyf controls autophagy through regulating subcellular localization of the Atg1-Atg13 complex. Gyf silencing also inhibited Atg1-Atg13-induced formation of Atg9 puncta, which is accumulated upon active membrane trafficking into autophagosomes. Gyf-null mutants also exhibited substantial defects in developmental or starvation-induced accumulation of autophagosomes and autolysosomes in the larval fat body. Furthermore, heads and thoraxes from Gyf-null adults exhibited strongly reduced expression of autophagosome-associated Atg8a-II compared to wild-type (WT) tissues. The decrease in Atg8a-II was directly correlated with an increased accumulation of ubiquitinated proteins and dysfunctional mitochondria in neuron and muscle, which together led to severe locomotor defects and early mortality. These results suggest that Gyf-mediated autophagy regulation is important for maintaining neuromuscular homeostasis and preventing degenerative pathologies of the tissues. Since human mutations in the GIGYF2 locus were reported to be associated with a type of familial Parkinson disease, the homeostatic role of Gyf-family proteins is likely to be evolutionarily conserved.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteína Adaptadora GRB10/metabolismo , Músculos/metabolismo , Neuronas/metabolismo , Animales , Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Beclina-1 , Encéfalo/metabolismo , Femenino , Silenciador del Gen , Homeostasis , Lisosomas/metabolismo , Masculino , Mitocondrias/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Ubiquitina/química , Proteínas de Transporte Vesicular/metabolismo
5.
Sci Rep ; 5: 9502, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25819761

RESUMEN

Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Drosophila/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Espacio Intracelular/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Proteínas Nucleares/genética , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
6.
Nat Commun ; 5: 4834, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25189398

RESUMEN

Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that a chronic increase of the cytosolic calcium concentration in hepatocytes during obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than 30 years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients.


Asunto(s)
Autofagia/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Lisosomas/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad/complicaciones , Fagosomas/metabolismo , Verapamilo/farmacología , Animales , Autofagia/efectos de los fármacos , Calcio/metabolismo , Citosol/metabolismo , Ecocardiografía , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/fisiopatología , Ratones
7.
FEBS J ; 281(17): 3816-27, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040165

RESUMEN

Autophagy is a homeostatic process that is important for degrading protein aggregates, nutrient deposits, dysfunctional organelles and several signaling molecules. p62/sequestosome-1 is a protein that binds to several autophagy substrates, such as ubiquitinated proteins, damaged mitochondria and signaling molecules such as an Nrf2 inhibitor Keap1, promoting their autophagic degradation. Sestrin2, a stress-inducible protein, has recently been shown to bind to p62 and promote autophagic degradation of such p62 targets. Because Sestrin2 is a metabolic regulator that suppresses diverse age- and obesity-associated pathologies, the autophagy-controlling function of Sestrin2 may be important for its other physiological functions. However, the molecular mechanism of how Sestrin2 can promote clearance of p62-associated proteins has been unclear. Here we show that Sestrin2 physically associates with Unc-51-like protein kinase 1 (ULK1) and p62 to form a complex in which both Sestrin2 and p62 become phosphorylated by ULK1 at multiple sites. Ser403 of p62, whose phosphorylation is known to promote autophagic degradation of p62 and its targets, is among the sites phosphorylated by ULK1. ULK1-mediated p62 phosphorylation was facilitated by Sestrin2 in cells as well as in in vitro kinase assays. Consistent with this finding, oligomycin-induced energy deprivation, which strongly activates ULK1, provoked a robust Ser403 phosphorylation of p62 in wild-type mouse embryonic fibroblasts. However, in ULK1/2- and Sestrin2-deficient mouse embryonic fibroblasts, oligomycin-induced p62 phosphorylation was dramatically attenuated, suggesting that endogenous Sestrin2-ULK1/2 mainly mediates p62 phosphorylation in response to energetic stress. Taken together, this study identifies ULK1 as a new p62 Ser403 kinase and establishes Sestrin2 as a promoter of ULK1-mediated p62 phosphorylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Oligomicinas/farmacología , Peroxidasas , Fosforilación , Estructura Terciaria de Proteína/fisiología , Proteína Sequestosoma-1 , Serina/metabolismo
8.
Nat Commun ; 5: 4233, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24947615

RESUMEN

Upon prolonged endoplasmic reticulum (ER) stress, cells attenuate protein translation to prevent accumulation of unfolded proteins. Here we show that Sestrin2 is critical for this process. Sestrin2 expression is induced by an ER stress-activated transcription factor CCAAT-enhancer-binding protein beta (c/EBPß). Once induced, Sestrin2 halts protein synthesis by inhibiting mammalian target of rapamycin complex 1 (mTORC1). As Sestrin2-deficient cells continue to translate a large amount of proteins during ER stress, they are highly susceptible to ER stress-associated cell death. Accordingly, dietary or genetically induced obesity, which does not lead to any pathological indication other than simple fat accumulation in the liver of wild-type (WT) mice, can provoke Sestrin2-deficient mice to develop severe ER stress-associated liver pathologies such as extensive liver damage, steatohepatitis and fibrosis. These pathologies are suppressed by liver-specific Sestrin2 reconstitution, mTORC1 inhibition or chemical chaperone administration. The Sestrin2-mediated unfolded protein response (UPR) may be a general protective mechanism against ER stress-associated diseases.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Hígado Graso/metabolismo , Fibrosis/patología , Prueba de Tolerancia a la Glucosa , Células Hep G2 , Hepatocitos/citología , Homeostasis , Humanos , Inflamación , Insulina/química , Hígado/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , Peroxidasas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada
9.
Proc Natl Acad Sci U S A ; 111(21): 7849-54, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825887

RESUMEN

Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2(-/-) mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adipocitos/metabolismo , Adipocitos/fisiología , Animales , Compuestos Azo , Ácidos Grasos no Esterificados/sangre , Humanos , Immunoblotting , Ratones , Ratones Transgénicos , Peroxidasas , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...