Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544049

RESUMEN

In this work, we propose our newly developed wafer-type plasma monitoring sensor based on a floating-type double probe method that can be useful for two-dimensional (2D) in situ plasma diagnosis within a semiconductor processing chamber. A key achievement of this work is the first realization of an ultra-thin plasma monitoring sensor with a system thickness of ~1.4 mm, which supports a fully automated robot arm transfer capability for in situ plasma diagnosis. To the best of our knowledge, it is the thinnest accomplishment among all wafer-type plasma monitoring sensors. Our proposed sensor is assembled with two Si wafers and SiO2-based probes; accordingly, it makes it possible to monitor the actual dynamics of processing plasmas under electrostatic chucking (ESC) conditions. Also, it allows for the prevention of chamber contamination issues after continuously exposing the radio frequency (RF) to various processing gases. Using a test-bed chamber, we successfully demonstrated the feasibility and system performance of the proposed sensor, including robot arm transfer capability, vacuum and thermal stress durability, and data integrity and reproducibility. Consequently, compared with the conventional plasma diagnostic tools, we expect that our proposed sensor will be highly beneficial for tool-to-tool matching (TTTM) and/or for studying various plasma-related items by more accurately providing the parameters of processing plasmas, further saving both time and manpower resources required for preventive maintenance (PM) routines as well.

2.
Med Phys ; 50(7): 4112-4121, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36907664

RESUMEN

BACKGROUND: Small-animal positron emission tomography (PET) systems are widely used in molecular imaging research and drug development. There is also growing interest in organ-dedicated clinical PET systems. In these small-diameter PET systems, the measurement of the depth-of-interaction (DOI) of annihilation photons in scintillation crystals allows for the correction of parallax error in PET system, leading to an improvement on the spatial resolution uniformity. The DOI information is also useful for improving the timing resolution of PET system as it enables the correction of DOI-dependent time walk in the arrival time difference measurement of annihilation photon pairs. The dual-ended readout scheme is one of the most widely investigated DOI measurement methods, which collects visible photons using a pair of photosensors located at both ends of the scintillation crystal. Although the dual-ended readout allows for simple and accurate DOI estimation, it requires twice the number of photosensors compared to the single-ended readout scheme. PURPOSE: To effectively reduce the number of photosensors in a dual-ended readout scheme, we propose a novel PET detector configuration that employs 45° tilted and sparsely arranged silicon photomultipliers (SiPMs). In this configuration, the angle between the scintillation crystal and SiPM is 45°. Therefore, and thus, the diagonal of the scintillation crystal matches one of the lateral sides of the SiPM. Accordingly, it allows for the use of SiPM device larger than the scintillation crystal, thereby improving light collection efficiency with a higher fill factor and reducing SiPM quantity. In addition, all scintillation crystals can achieve more uniform performance than other dual-ended readout methods with a sparse SiPM arrangement because 50% of the scintillation crystal cross section is commonly in contact with the SiPM. METHODS: To demonstrate the feasibility of our proposed concept, we implemented a PET detector that employs a 4 × ${\rm{\;}} \times \;$ 4 LSO block with a single crystal dimension of 3.03 × 3.03 × 20 mm3 and a 45° tilted SiPM array. The 45° tilted SiPM array consists of 2 × 3 SiPM elements at the top ("Top SiPM") and 3 × 2 SiPM elements at the bottom ("Bottom SiPM"). Each crystal element of the 4 × 4 LSO block is optically coupled with each quarter section of the Top SiPM and Bottom SiPM pair. To characterize the performance of the PET detector, the energy, DOI, and timing resolution were measured for all 16 crystals. The energy data was obtained by summing all the charges from the Top SiPMs and Bottom SiPMs, and the DOI resolution was measured by irradiating the side of the crystal block at five different depths (2, 6, 10, 14, and 18 mm). The timing was estimated by averaging the arrival time of the annihilation photons measured at the Top SiPMs and Bottom SiPMs (Method 1). The DOI-dependent time-walk effect was further corrected by using DOI information and statistical variations in the trigger times at the Top SiPMs and Bottom SiPMs (Method 2). RESULTS: The average DOI resolution of the proposed PET detector was 2.5 mm, thereby resolving the DOI at five different depths, and the average energy resolution was 16% full width at half maximum (FWHM). When Methods 1 and 2 were applied, the coincidence timing resolutions were 448 and 411 ps FWHM, respectively. CONCLUSIONS: We expect that our novel low-cost PET detector design with 45° tilted SiPMs and a dual-ended readout scheme would be a suitable solution for constructing a high-resolution PET system with DOI encoding capability.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Animales , Conteo por Cintilación
3.
Biomed Eng Lett ; 12(3): 263-283, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35892029

RESUMEN

In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.

4.
Transl Lung Cancer Res ; 11(4): 588-599, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35529795

RESUMEN

Background: With advances in surgical technology, thoracic surgeons have widely adopted minimally invasive limited-resection techniques to preserve normal tissues. However, it remains difficult to achieve in situ localization of invisible pulmonary nodules during surgery. Therefore, we proposed an in situ ultra-low-dose X-ray imaging device for intraoperative pulmonary nodule localization during minimally invasive surgeries. Methods: The proposed device features a hand-held type and consists of a carbon nanotube-based X-ray source and an intraoral dental sensor. In a preclinical study, we created pseudo pulmonary nodules using ex vivo pig lungs. Subsequently, its clinical feasibility was evaluated using ex vivo lung cancer specimens from patients with cancer who had undergone minimally invasive surgery. Results: Using the proposed device, we successfully differentiated normal and abnormal tissues from X-ray images of resected lung specimens. In addition, our proposed device only yielded an average radiation dose of 90.9 nGy for a single acquisition of X-ray images and demonstrated excellent temperature stability under consecutive X-ray irradiations. The radiation exposure of our proposed device (0.1±0.0006 µSv/h) was significantly lower than that of conventional C-arm fluoroscopy (41.5±51.8 µSv/h). In both preclinical and clinical studies, the margin of nodule shadows was clearly visualized using the proposed device. Conclusions: The proposed device substantially reduced radiation exposure to staff and patients and may allow in situ localization of pulmonary nodules. Our proposed device clearly revealed the margins of lung nodules with radiocontrast injection and showed the potential to identify solid nodules without the use of radiocontrast agents.

5.
Phys Med Biol ; 66(20)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34587608

RESUMEN

In this study, we propose a simple gain compensation technique for silicon photomultiplier (SiPM)-based positron emission tomography detectors, using a temperature sensor that automatically controls the bias voltage of the SiPM depending upon the ambient temperature. The temperature sensor output, for which the temperature coefficient can be controlled by the input voltage, is used as one end of the bias voltage. By adjusting the temperature coefficient, the proposed gain compensation method can be applied to various SiPMs with different breakdown voltages. As a proof of concept, the proposed method was evaluated for two scintillation detector setups. Applying the proposed method to a single-channel SiPM (ASD-NUV3S-P; AdvanSiD, Italy) coupled with a 3 mm × 3 mm × 20 mm LGSO crystal, the 511 keV photopeak position in the energy histogram changed by only 1.52% per 10 °C while, without gain compensation, it changed by 13.27% per 10 °C between 10 °C and 30 °C. On a 4 × 4 array MPPC (S14161-3050HS-04; Hamamatsu, Japan), coupled with a 3.12 mm × 3.12 mm × 15 mm 4 × 4 LSO array, the photopeak changes with and without gain compensation were 2.34% and 20.53% per 10 °C between 10 °C and 30 °C, respectively. On the wider range of temperature, between 0 °C and 40 °C, the photopeak changes with and without gain compensation were 3.09% and 20.89%, respectively. The energy resolution degradation of SiPM-based scintillation detectors operating at temperatures was negligible when the proposed gain compensation method was applied.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Temperatura
6.
IEEE Trans Med Imaging ; 40(6): 1579-1590, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33625980

RESUMEN

In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de Imagen
7.
Phys Med Biol ; 65(20): 205010, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32702670

RESUMEN

In positron emission tomography (PET) with pixelated detectors, a significant number of annihilation photons interact with scintillation crystals through single or multiple Compton scattering events. When these partial energy depositions occur across multiple crystal elements, we call them inter-crystal scatter (ICS) events. ICS events lead to incorrect localization of the annihilation photons, thereby degrading the PET image contrast, spatial resolution, and lesion detectability. The accurate identification of ICS events is the first essential step to improve the quality of PET images by rejecting ICS events or recovering ICS events without losing PET sensitivity. In this study, we propose a novel silicon photomultiplier (SiPM) readout method to identify ICS events in one-to-one coupled PET detectors with a reduced number of data acquisition channels. For concept verification, we assembled a PET detector that consists of a 16-channel SiPM array and 4 [Formula: see text] 4 lutetium oxyorthosilicate (LSO) array with a 3.2 mm crystal pitch. The proposed SiPM readout scheme serializes the 16 SiPM anode signals into four pulse train outputs encoded with four increasing time-delays in steps of 250 ns intervals. A Sum signal of the 16 SiPM anodes provides the timing information for time-of-flight measurement and a trigger signal for coincidence detection. A time-over-threshold (TOT) method was applied for obtaining the energy information followed by a subsequent TOT-to-energy calibration. We successfully identified the ICS events and determined their interacted positions and deposited energies by analyzing the digital pulses from the four pulse train output channels. The occurrence rate of ICS events was 10.85% for the 4 × 4 PET detector module with 3.2 mm-pitch LSO crystals. The PET detector yielded an energy resolution of 10.9 [Formula: see text] 0.6% and coincidence timing resolution of 285 [Formula: see text] 12 ps FWHM. We expect that the proposed method can be a useful solution for alleviating the readout burden of SiPM-based PET scanners with ICS event identification capability.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Lutecio/química , Fotones , Tomografía de Emisión de Positrones/instrumentación , Silicatos/química , Silicio/química , Humanos , Tomografía de Emisión de Positrones/métodos
8.
Phys Med Biol ; 65(15): 155007, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32244244

RESUMEN

In this study, we propose a linear field-programmable gate array (FPGA)-based charge measurement method by combining a charge-to-time converter (QTC) with a single-ended memory interface (SeMI) input receiver. The QTC automatically converts the input charge into a dual-slope pulse, which has a width proportional to the input charge. Dual-slope pulses are directly digitized by the FPGA input/output (I/O) buffers configured with SeMI input receivers. A proof-of-concept comparator-less QTC/SeMI data acquisition (DAQ) system, consisting of 132 energy and 33 timing channels, was developed and applied to a prototype brain-dedicated positron emission tomography (PET) scanner. The PET scanner consisted of 14 sectors, each containing 2 × 1 block detectors, and each block detector yielded four energy signals and one timing signal. Because a single QTC/SeMI DAQ system can receive signals from up to eight sectors, two QTC/SeMI DAQ systems connected using high-speed gigabit transceivers were used to acquire data from the PET scanner. All crystals in the PET block detectors, consisting of dual-layer stacked lutetium oxyorthosilicate (LSO) scintillation crystal and silicon photomultiplier arrays, were clearly resolved in the flood maps with an excellent energy resolution. The PET images of hot-rod, cylindrical, and two-dimensional Hoffman brain phantoms were also acquired using the prototype PET scanner and two QTC/SeMI DAQ systems.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones/instrumentación , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Lutecio , Fantasmas de Imagen , Control de Calidad , Silicatos
9.
Phys Med ; 68: 117-123, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31783221

RESUMEN

PURPOSE: We investigated the highly multiplexed readout of SiPM signals that are useful in developing brain-dedicated PET detectors with DOI-capable crystal blocks and large-area SiPM arrays. METHODS: The PET detector module used in this study was equipped with a two-layer relative-offset DOI crystal block and a 2 × 2 array of 16-channel SiPMs. The lower crystal-layer consisted of a 14 × 14 array of 1.78 × 1.78 × 8 mm3 LSO crystals and the upper crystal-layer consisted of a 13 × 13 array of 1.78 × 1.78 × 12 mm3 LSO crystals. The energy and position information was obtained via signals from the 8 × 8 resistive charge division multiplexing circuit. The timing performance was evaluated with varying multiplexing ratios (i.e. 16:1, 32:1, and 64:1) via first-order analog high-pass filtering. RESULTS: For three different multiplexing schemes, all LSO crystals with two-layer DOI information were clearly resolved and yielded good energy resolutions of 10.5 ± 1.0% (upper) and 12.1 ± 1.7% (lower). The 16:1 multiplexing yielded an optimal timing performance with average CRT values of 325 ps FWHM (upper) and 342 ps FWHM (lower); however, the timing performances were maintained almost constant even for 64:1 multiplexing with average CRT values of 336 ps FWHM (upper) and 347 ps FWHM (lower). CONCLUSIONS: The highly multiplexed SiPM signal readout via the first-order analog high-pass filtering could be an attractive solution to develop brain-dedicated PET scanners, effectively decreasing the burden of DAQ systems with moderate compromise in terms of TOF and DOI performances.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/instrumentación , Equipos y Suministros Eléctricos
10.
Phys Med Biol ; 63(24): 24NT02, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30524000

RESUMEN

Coincidence resolving time (CRT) is one of the most important physical-performance measures for positron emission tomography (PET), as reconstruction with accurate time-of-flight information enhances the lesion detectability in patient studies. Accordingly, various PET detector designs and high-performance front-end readout circuits have been actively investigated to improve timing performance. The resulting PET detectors are often evaluated using multichannel waveform digitizers for versatile data analysis of the output signals. However, we have found that inappropriate data acquisition (DAQ) using a multichannel waveform digitizer based on the domino-ring-sampler 4 (DRS4) chip can lead to a considerable error when determining CRT. To address this issue, we performed CRT measurements using a pair of Hamamatsu R9800 photomultiplier tube based PET detectors. Then, considering intra- and inter-chip sampling, we employed four different combinations of input channels into the CAEN DT5742B waveform digitizer and obtained 2D CRT maps according to the leading-edge discriminator threshold for assessing each DAQ scheme. The intra-chip CRT measurement exhibited unusual streak patterns in the 2D CRT map and yielded the artificially-low CRT information in PET detector pairs, whereas the inter-chip CRT measurement provided the reliable estimation of timing resolution. Further, we could prevent the high-frequency signal crosstalk among input channels within the DRS4 chip using the inter-chip CRT measurement. We expect that our findings will also be useful for achieving the reliable CRT measurements when using other single-chip-based multichannel waveform digitizers.


Asunto(s)
Equipos y Suministros Eléctricos/normas , Tomografía de Emisión de Positrones/instrumentación , Diseño de Equipo , Humanos , Tomografía de Emisión de Positrones/métodos , Tiempo
11.
Phys Med Biol ; 62(11): 4390-4405, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28368851

RESUMEN

Silicon photomultiplier (SiPM) is widely utilized in various positron emission tomography (PET) detectors and systems. However, the individual recording of SiPM output signals is still challenging owing to the high granularity of the SiPM; thus, charge division multiplexing is commonly used in PET detectors. Resistive charge division method is well established for reducing the number of output channels in conventional multi-channel photosensors, but it degrades the timing performance of SiPM-based PET detectors by yielding a large resistor-capacitor (RC) constant. Capacitive charge division method, on the other hand, yields a small RC constant and provides a faster timing response than the resistive method, but it suffers from an output signal undershoot. Therefore, in this study, we propose a hybrid charge division method which can be implemented by cascading the parallel combination of a resistor and a capacitor throughout the multiplexing network. In order to compare the performance of the proposed method with the conventional methods, a 16-channel Hamamatsu SiPM (S11064-050P) was coupled with a 4 × 4 LGSO crystal block (3 × 3 × 20 mm3) and a 9 × 9 LYSO crystal block (1.2 × 1.2 × 10 mm3). In addition, we tested a time-over-threshold (TOT) readout using the digitized position signals to further demonstrate the feasibility of the time-based readout of multiplexed signals based on the proposed method. The results indicated that the proposed method exhibited good energy and timing performance, thus inheriting only the advantages of conventional resistive and capacitive methods. Moreover, the proposed method showed excellent pulse shape uniformity that does not depend on the position of the interacted crystal. Accordingly, we can conclude that the hybrid charge division method is useful for effectively reducing the number of output channels of the SiPM array.


Asunto(s)
Electrónica/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido , Silicio/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA