Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 403: 130848, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761868

RESUMEN

This study addresses membrane biofouling in membrane bioreactors (MBRs) by exploring fungal-to-bacterial quorum quenching (QQ) strategies. While most research has been focused on bacterial-to-bacterial QQ tactics, this study identified fungal strain Vanrija sp. MS1, which is capable of degrading N-acyl-homoserine lactones (signaling molecules of Gram-negative bacteria). To determine the benefits of fungal over bacterial strains, after immobilization on fluidizing spherical beads in an MBR, MS1 significantly reduced the fouling rate by 1.8-fold compared to control MBR, decreased extracellular polymeric substance levels in the biofilm during MBR operation, and favorably changed microbial community and bacterial network, resulting in biofouling mitigation. It is noteworthy that, unlike Rhodococcus sp. BH4, MS1 enhanced QQ activity when switching from neutral to acidic conditions. These results suggest that MS1 has the potential for the effective treatment of acidic industrial wastewater sources such as semiconductor and secondary battery wastewater using MBRs.


Asunto(s)
Incrustaciones Biológicas , Reactores Biológicos , Membranas Artificiales , Percepción de Quorum , Aguas Residuales , Purificación del Agua , Incrustaciones Biológicas/prevención & control , Reactores Biológicos/microbiología , Aguas Residuales/química , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biopelículas , Bacterias/metabolismo
2.
Water Res ; 250: 121035, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154339

RESUMEN

Membrane bioreactors (MBRs) play a crucial role in wastewater treatment, but they face considerable challenges due to fouling. To tackle this issue, innovative strategies are needed. This study investigated the effectiveness of membrane reciprocation and quorum quenching (QQ) to control fouling in MBRs. The study compared MBRs using membrane reciprocation (30 rpm) and QQ (injecting media containing 100 or 200 mg/L BH4) with conventional MBRs employing different air-scouring intensities. The results demonstrated that combining membrane reciprocation (30 rpm) with QQ (200 mg/L BH4) significantly extended the service time of MBRs, making it approximately six times longer than conventional methods. Moreover, this approach reduced physically reversible resistance. The reduction in signal molecules related to biofouling due to QQ showcased its critical role in controlling biofouling, even under high shear caused by membrane reciprocation. However, the impact of QQ on microbial community structure appeared relatively insignificant when compared to factors such as operation time, aeration intensity, and membrane reciprocation. By combining membrane reciprocation and QQ, the study achieved a remarkable 81 % energy saving compared to extensive aeration (103 s-1 in velocity gradient), in addition to the extended service time. Importantly, this combined antifouling approach did not negatively affect microbial characteristics and wastewater treatment, emphasizing its effectiveness in MBRs. Overall, the findings of this study offer valuable insights for developing synergistic fouling control strategies in MBRs, significantly improving the energy efficiency of the wastewater treatment process.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Percepción de Quorum , Membranas Artificiales , Incrustaciones Biológicas/prevención & control , Reactores Biológicos , Purificación del Agua/métodos
3.
ACS Appl Mater Interfaces ; 15(39): 45876-45885, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37726216

RESUMEN

Among lithium-sulfur (Li-S) battery materials, sulfurized polyacrylonitrile (SPAN) has attracted substantial attention as a cathode material owing to its potential to bypass the problematic polysulfide formation and shuttling effect. Carbonate-based electrolytes have been eschewed compared with ether-based electrolytes because of their poor compatibility with Li metal anodes. In this work, we design and study an electrolyte comprising 0.8 M of lithium bis(trifluoromethanesulfonyl)imide, 0.2 M of lithium difluoro(oxalate)borate, and 0.05 M of lithium hexafluorophosphate in ethyl methyl carbonate/fluoroethylene carbonate = 3:1 v/v solution in the Li-S battery coupled with a Li metal anode and SPAN cathode. The well-designed carbonate-based electrolyte effectively stabilizes both electrodes, delivering high Coulombic efficiencies with stable cyclability. Studies using operando optical microscopy and atomic force microscopy demonstrate that dense, uniform Li deposition is promoted to suppress dendrite growth even at a high current density. Operando Raman spectroscopy reveals a reversible Li+ storage behavior in the SPAN structure through the cleavage of disulfide bonds and their redimerization during lithiation and delithiation. As a result, the proposed Li-S battery delivers an overall capacity retention of 73.5% over 1000 cycles, with high Coulombic efficiencies over 99.9%.

4.
Water Res ; 244: 120473, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604018

RESUMEN

Quorum quenching (QQ) has effectively prevented biofouling in membrane bioreactors (MBRs) employing isolated QQ bacterial strains. However, the influence of QQ on the microbial population still needs to be fully understood. This research aims to analyze the microbial population in MBRs over an extended period (>250 days) under different conditions, such as varying aeration intensities and doses of QQ bacteria, QQ media, and types of feed. Results show that no significant changes occurred in the structure and diversity of the microbial community in the mixed liquor and biofilm due to QQ treatment. Canonical correspondence analysis did reveal that the microbial communities were strongly influenced by feed types and phases. The microbial community composition varied between bacterial habitats (i.e., mixed liquor and biofilm), showing the two dominant phyla Proteobacteria and Bacteroidota in the former and Proteobacteria and Chloroflexi in the latter. The co-occurrence network analysis indicated that the biofilm (with 163 edges) in the MBR fed with real wastewater exhibited a more intricate network than the biofilm (with 53 edges) in the MBR fed with synthetic wastewater. With QQ, the biofilm exhibited more positive edges than negative ones. The phylogenetic investigation of communities showed that QQ barely affects functional gene-related quorum sensing (e.g., bacterial chemotaxis, motility proteins, and secretion) in mixed liquor but in biofilms at relatively large QQ doses (> 75 mg/L BH4). This research sheds light on the bacterial QQ's role in reducing MBR biofouling and provides crucial insights into its underlying mechanisms.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Percepción de Quorum , Aguas Residuales , Filogenia , Reactores Biológicos/microbiología , Incrustaciones Biológicas/prevención & control , Bacterias , Proteobacteria , Membranas Artificiales
5.
Bioresour Technol ; 363: 127930, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261999

RESUMEN

Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Biosólidos , Reactores Biológicos , Metano , Carbono
6.
Membranes (Basel) ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323771

RESUMEN

Bacterial quorum quenching (QQ) media with various structures (e.g., bead, cylinder, hollow cylinder, and sheet), which impart biofouling mitigation in membrane bioreactors (MBRs), have been reported. However, there has been a continuous demand for membranes with QQ capability. Thus, herein, we report a novel double-layered membrane comprising an outer layer containing a QQ bacterium (BH4 strain) on the polysulfone hollow fiber membrane. The double-layered composite membrane significantly inhibits biofilm formation (i.e., the biofilm density decreases by ~58%), biopolymer accumulation (e.g., polysaccharide), and signal molecule concentration (which decreases by ~38%) on the membrane surface. The transmembrane pressure buildup to 50 kPa of the BH4-embedded membrane (17.8 h ± 1.1) is delayed by more than thrice (p < 0.05) of the control with no BH4 in the membrane's outer layer (5.5 h ± 0.8). This finding provides new insight into fabricating antibiofouling membranes with a self-regulating property against biofilm growth.

7.
Sci Total Environ ; 819: 152017, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852249

RESUMEN

Photolytic quorum quenching by ultraviolet A (UVA) irradiation is an effective strategy for controlling membrane bioreactor (MBR) biofouling; however, its effects on MBR microbial communities and functional genes have not yet been explored. Here, we report on the effects of the UVA irradiation, which mitigates membrane biofouling, on the microbial community structures, alpha and beta diversities, and functional gene expressions in the MBR mixed liquor and biocake (membrane fouling layer) for the first time. The results show that the microbial communities become less diversified when alternating UVA is applied to the MBRs. The changes in the community structure are highly influenced by spatiotemporal factors, such as microbial habitats (mixed liquor and biocake) and reactor operation time, although UVA irradiation also has some impacts on the community. The relative abundance of the Sphingomonadaceae family, which can decompose the furan ring of autoinducer-2 (AI-2) signal molecules, becomes greater with continuous UVA irradiation. Xanthomonadaceae, which produces biofilm-degrading enzymes, is also more abundant with UVA photolysis than without it. Copies of monooxygenase and hydroxylase enzyme-related genes increase in the MBR with longer UVA exposures (i.e., continuous UVA). These enzymes seem to be inducible by UVA, enhancing the AI-2 inactivation. In conclusion, UVA irradiation alters the microbial community and the metabolism in the MBR, contributing to the membrane biofouling mitigation.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Reactores Biológicos , Expresión Génica , Membranas Artificiales , Fotólisis , Percepción de Quorum
8.
Chemosphere ; 277: 130249, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33770689

RESUMEN

Removal of nitrosamines from water intended for consumption is an important topic due to the carcinogenic risks they pose to human health. In this study, we measure and compare nitrosamine removal by four individuals and three combinations of water treatments applied in situ as a pilot study and in the laboratory. Of the two advanced oxidation processes tested, UV irradiation at a wavelength of 254 nm was more effective in nitrosamine removal than ozonation; however, the efficacy of UV photolysis required a high dose (>635 mJ/cm2) for sufficient (>90%) removal of the contaminants. The biological activated carbon (BAC) process was also effective at removing nitrosamines, most of which were adsorbed onto the carbon. A small fraction (<10%) of nitrosamines were removed through biodegradation. Nanofiltration membranes were limited in removing nitrosamines, particularly N-nitrosodimethylamine, which is hydrophilic. Employing either UV or BAC treatments can warrant a high degree of elimination of nitrosamines; however, desorption of nitrosamines from BAC can occur due to variations in the quality of source water and the types of carbon filters used. Combined treatments using both UV and BAC processes offer promising alternative strategies for removing nitrosamines when treating water for human consumption.


Asunto(s)
Nitrosaminas , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Dimetilnitrosamina , Humanos , Proyectos Piloto , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 265: 129166, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33302205

RESUMEN

Metal oxide anode electrocatalysts are important for an effective removal of contaminants and the enhancement of electrode durability in the electrochemical oxidation process. Herein, we report the enhanced lifetime of RuOx-TiO2 composite anodes that was achieved by optimizing the fabrication conditions (e.g., the Ru mole fraction, total metal content, and calcination time). The electrode durability was assessed through accelerated service lifetime tests conducted under harsh environmental conditions, by using 3.4% NaCl and 1.0 A/cm2. The electrochemical characteristics of the anodes prepared with metal oxides having different compositions were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray analyses. We noticed that, the larger the Ru mole fraction, the more durable were the electrodes. The RuOx-TiO2 electrodes were found to be highly stable when the Ru mole fraction was >0.7. The 0.8RuOx-0.2TiO2 electrode was selected as the one with the most appropriate composition, considering both its stability and contaminant treatability. The electrodes that underwent a 7-h calcination (between 1 and 10 h) showed the longest lifetime under the tested conditions, because of the formation of a stable Ru oxide structure (i.e., RuO3) and a lower resistance to charge transfer. The electrode deactivation mechanism that occurred due to the dissolution of active catalysts over time was evidenced by an impedance analysis of the electrode itself and surface elemental mapping.


Asunto(s)
Purificación del Agua , Electrodos , Óxidos , Titanio
10.
Water Res ; 144: 699-708, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30096695

RESUMEN

Versatile electrochemical reactions are effective for removing a wide range of water contaminants. This study focuses on the development and testing of bifunctional electrocatalytic filter anodes as reactive and separating media for the simultaneous removal of refractory dissolved organic and particulate contaminants from real wastewater effluents. The results show that the TiO2 particle interlayers formed between the Ti fiber support and the top composite metal oxide catalyst layers assist in reducing filter pores to an effective size range that enables removal of most particulates within the wastewater. The double-sheet design, which is a sandwich-structured module with an internal void space for permeate, prevents filter fouling, and transmembrane pressure can be maintained at a very low level of <5 kPa during batch and continuous flow reactor operations. Substantive and simultaneous removal of dissolved organics (e.g., chromophores, fluorophores, 1,4-dioxane, chemical oxygen demand, and total organic carbon) and particulate matter (i.e., turbidity) are achieved, although removal rates and efficacies differ depending on the electric current density applied. Decolorization and particulate rejection occur swiftly and immediately, but 1,4-dioxane degradation is relatively slow and quite time-dependent. Possible 1,4-dioxane degradation pathways during electrocatalysis are also proposed. Electrochemical filtration technology shows considerable promise for use in the next generation of advanced wastewater treatment solutions.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Catálisis , Filtración , Titanio , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA