Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 164(7): 1293-1309, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36898552

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS: Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS: Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS: This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteogenómica , Humanos , Proteómica , Pronóstico , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología
2.
Int J Immunopathol Pharmacol ; 36: 3946320221133018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36214175

RESUMEN

OBJECTIVE: Inflammation, a vital innate immune response against infection and injury, is mediated by macrophages. Spleen tyrosine kinase (Syk) regulates inflammatory responses in macrophages; however, its role and underlying mechanisms are uncertain. MATERIALS AND METHODS: In this study, overexpression and knockout (KO) cell preparations, phagocytosis analysis, confocal microscopy, reactive oxygen species (ROS) determination, mRNA analysis, and immunoprecipitation/western blotting analyses were used to investigate the role of Syk in phagocytosis and its underlying mechanisms in macrophages during inflammatory responses. RESULTS: Syk inhibition by Syk KO, Syk-specific small interfering RNA (siSyk), and a selective Syk inhibitor (piceatannol) significantly reduced the phagocytic activity of RAW264.7 cells. Syk inhibition also decreased cytochrome c generation by inhibiting ROS-generating enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and ROS scavenging suppressed the phagocytic activity of RAW264.7 cells. LPS induced the tyrosine nitration (N-Tyr) of suppressor of cytokine signaling 1 (SOCS1) through Syk-induced ROS generation in RAW264.7 cells. On the other hand, ROS scavenging suppressed the N-Tyr of SOCS1 and phagocytosis. Moreover, SOCS1 overexpression decreased phagocytic activity, and SOCS1 inhibition increased the phagocytic activity of RAW264.7 cells. CONCLUSION: These results suggest that Syk plays a critical role in the phagocytic activity of macrophages by inducing ROS generation and suppressing SOCS1 through SOCS1 nitration during inflammatory responses.


Asunto(s)
Citocromos c , Lipopolisacáridos , Citocinas , Lipopolisacáridos/farmacología , Macrófagos , Fagocitosis , ARN Mensajero , ARN Interferente Pequeño , Especies Reactivas de Oxígeno , Quinasa Syk , Tirosina
3.
Cancer Lett ; 544: 215803, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35753528

RESUMEN

The importance of methylation in the tumorigenic responses of nonhistone proteins, such as TP53, PTEN, RB1, AKT, and STAT3, has been emphasized in numerous studies. In parallel, the corresponding nonhistone protein methyltransferases have been acknowledged in the pathophysiology of cancer. Thus, this study aimed to explore the pathological role of a nonhistone methyltransferase in gastric cancer (GC), identify nonhistone substrate protein, and understand the underlying mechanism. Interestingly, among the 24 methyltransferases and methyltransferase family 16 (MTF16) proteins, EEF1AKMT3 (METTL21B) expression was prominently lower in GC tissues than in normal adjacent tissues and was associated with a worse prognosis. In addition, EEF1AKMT3-knockdown induced gastric tumor invasiveness and migration. Through gain and loss-of-function studies, mass spectrometry analysis, RNA-seq, and phospho-antibody array, we identified EEF1AKMT3 as a novel tumor-suppressive methyltransferase that catalyzes the monomethylation of MAP2K7 (MKK7) at K296, thereby decreasing the phosphorylation, ubiquitination, and degradation of TP53. Furthermore, EEF1AKMT3, p-MAP2K7, and TP53 protein levels were positively correlated in GC tissues. Collectively, our results delineate the tumor-suppressive function of the EEF1AKMT3/MAP2K7/TP53 signaling axis and suggest the dysregulation of the signaling axis as potential targeted therapy in GC.


Asunto(s)
Neoplasias Gástricas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MAP Quinasa Quinasa 7/metabolismo , Metiltransferasas/metabolismo , Invasividad Neoplásica , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
EPMA J ; 12(4): 629-645, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34956427

RESUMEN

BACKGROUND: Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) immune checkpoint inhibitors (ICIs) significantly affect outcomes in non-small cell lung cancer (NSCLC) patients. However, differences in reactions toward PD-1/PD-L1 ICI among patients impose inefficient treatment. Therefore, developing a reliable biomarker to predict PD-1/PD-L1 ICI reaction is highly necessary for predictive, preventive, and personalized (3P) medicine. MATERIALS AND METHODS: We recruited 63 patients from the National Cancer Center (NCC) and classified them into the training and validation sets. Next, 99 patients were recruited for inclusion into the external validation set at the Samsung Medical Center (SMC). Proteomic analysis enabled us to identify plasma C7 levels, which were significantly different among groups classified by their overall response to the RECIST V 1.1-based assessment. Analytical performance was evaluated to predict the PD-1/PD-L1 ICI response for each type of immunotherapy, and NSCLC histology was evaluated by determining the C7 levels via ELISA. RESULTS: Plasma C7 levels were significantly different between patients with and without clinical benefits (PFS ≥ 6 months). Among the groups sorted by histology and PD-1/PD-L1 immunotherapy type, only the predicted accuracy for pembrolizumab-treated patients from both NCC and SMC was greater than 73%. In patients treated with pembrolizumab, C7 levels were superior to those of the companion diagnostics 22C3 (70.3%) and SP263 (62.1%). Moreover, for pembrolizumab-treated patients for whom the PD-L1 tumor proportion score (TPS) was < 50%, the predictive accuracy of C7 was nearly 20% higher than that of 22C3 and SP263. CONCLUSION: Evaluation of plasma C7 levels shows an accurate prediction of NSCLC patient reactions on pembrolizumab. It demonstrates plasma C7 is an alternative and supportive biomarker to overcome the predictive limitation of previous 22C3 and SP263. Thus, it is clear that clinical use of plasma C7 allows predictive diagnosis on lung cancer patients who have not been successfully treated with current CDx and targeted prevention on metastatic diseases in secondary care caused by a misdiagnosis of current CDx. Reduction of patients' financial burden and increased efficacy of cancer treatment would also enable prediction, prevention, and personalization of medical service on NSCLC patients. In other words, plasma C7 provides efficient medical service and an optimized medical economy followed which finally promotes the prosperity of 3P medicine. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00266-x.

5.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064761

RESUMEN

Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.


Asunto(s)
Citratos/metabolismo , Glutamina/metabolismo , Lípidos/análisis , Mitocondrias/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Páncreas/citología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Pharm Biol ; 59(1): 74-86, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33439064

RESUMEN

CONTEXT: Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE: This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS: The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS: Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS: This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/farmacología , Sistemas de Liberación de Medicamentos/métodos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Extractos Vegetales/uso terapéutico , Quinasa Syk/antagonistas & inhibidores , Familia-src Quinasas/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Etanol/farmacología , Etanol/uso terapéutico , Gastritis/tratamiento farmacológico , Gastritis/metabolismo , Células HEK293 , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Células RAW 264.7 , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo
7.
Front Immunol ; 12: 767366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003083

RESUMEN

Background: Inflammation, a vital immune response to infection and injury, is mediated by macrophage activation. While spleen tyrosine kinase (Syk) and myeloid differentiation primary response 88 (MyD88) are reportedly involved in inflammatory responses in macrophages, their roles and underlying mechanisms are largely unknown. Methods: Here, the role of the MyD88-Syk axis and the mechanism by which Syk and MyD88 cooperate during macrophage-mediated inflammatory responses are explored using knockout conditions of these proteins and mutation strategy as well as flowcytometric and immunoblotting analyses. Results: Syk rapidly activates the nuclear factor-kappa B (NF-κB) signaling pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the activation of the NF-κB signaling pathway is abolished in Syk-/- RAW264.7 cells. MyD88 activates Syk and Syk-induced activation of NF-κB signaling pathway in LPS-stimulated RAW264.7 cells but Syk-induced inflammatory responses are significantly inhibited in MyD88-/- RAW264.7 cells. MyD88 interacts with Syk through the tyrosine 58 residue (Y58) in the hemi-immunoreceptor tyrosine-based activation motif (ITAM) of MyD88, leading to Syk activation and Syk-induced activation of the NF-κB signaling pathway. Src activates MyD88 by phosphorylation at Y58 via the Src kinase domain. In addition, Ras-related C3 botulinum toxin substrate 1 (Rac1) activation and Rac1-induced formation of filamentous actin (F actin) activate Src in LPS-stimulated RAW264.7 cells. Conclusions: These results suggest that the MyD88-Syk axis is a critical player in macrophage-mediated inflammatory responses, and its function is promoted by an upstream Src kinase activated by Rac1-generated filamentous actin (F-actin).


Asunto(s)
Inflamación/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Quinasa Syk/inmunología , Animales , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Activación de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , Células RAW 264.7 , Transducción de Señal/inmunología , Quinasa Syk/genética , Quinasa Syk/metabolismo , Tirosina/genética , Tirosina/inmunología , Tirosina/metabolismo
8.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357521

RESUMEN

Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N'-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.


Asunto(s)
Acetamidas/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos/efectos adversos , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Acetamidas/química , Animales , Antiinflamatorios/química , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-31611922

RESUMEN

In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1ß. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/ß, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.

10.
Ther Adv Med Oncol ; 11: 1758835919875574, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579105

RESUMEN

One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.

11.
J Ethnopharmacol ; 235: 38-46, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30710734

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Olea europaea L., (Oleaceae) has been used widely in folk medicine in the European Mediterranean islands, India, Asia, and other parts of the world. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms of how it inhibits the inflammatory response are not fully understood. In this study, we sought to identify the anti-inflammatory mechanisms of this plant. MATERIALS AND METHODS: Using macrophages, we investigated the effects of O. europaea L. methanol extract (Oe-ME) and ethanol extract (Oe-EE) on the production of inflammatory mediator nitric oxide (NO) and prostaglandin E2 (PGE2), the expression levels of pro-inflammatory genes and intracellular inflammatory signaling activities. RESULTS: Oe-ME and Oe-EE suppressed the production of NO in lipopolysaccharide-(LPS-), Pam3CSK4-, and poly (I:C)-stimulated RAW264.7 cells; importantly, no cytotoxicity was observed. Oe-ME and Oe-EE reduced production of PGE2 without exhibiting cytotoxicity. The mRNA expression levels of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), IL-6, IL-1ß, and tumor necrosis factor (TNF)-α were down-regulated by Oe-ME and Oe-EE. Nuclear fraction and whole lysate immunoblotting analyses and overexpression experiments strongly suggested that Oe-ME decreased the translocation of p65 and p50 (nuclear factors of the NF-κB subunit) as well as Src and Syk. CONCLUSION: These results suggest that Oe-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Olea/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Dinoprostona/metabolismo , Etanol/química , Células HEK293 , Humanos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Metanol/química , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo
12.
Mediators Inflamm ; 2018: 9079527, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736153

RESUMEN

Tabebuia avellanedae has been traditionally used as an herbal remedy to alleviate various diseases. However, the plant's pharmacological activity in allergic and inflammatory diseases and its underlying mechanism are not fully understood. Therefore, we investigated the pharmacological activity of Tabetri (T. avellanedae ethanol extract (Ta-EE)) in the pathogenesis of AD. Its underlying mechanism was explored using an AD mouse model and splenocytes isolated from this model. Ta-EE ameliorated the AD symptoms without any toxicity and protected the skin of 2,4-dinitrochlorobenzene- (DNCB-) induced AD mice from damage and epidermal thickness. Ta-EE reduced the secreted levels of allergic and proinflammatory cytokines, including histamine, immunoglobulin E (IgE), interleukin- (IL-) 4, and interferon-gamma (IFN-γ) in the DNCB-induced AD mice. Ta-EE suppressed the mRNA expression of T helper 2-specific cytokines, IL-4 and IL-5, and the proinflammatory cytokine IFN-γ in the atopic dermatitis skin lesions of AD mice. Moreover, Ta-EE suppressed the mRNA expression of IL-4, IL-5, IFN-γ, and another proinflammatory cytokine, IL-12, in the Con A-stimulated splenocytes. It also suppressed IL-12 and IFN-γ in the LPS-stimulated splenocytes. Taken together, these results suggest that Ta-EE protects against the development of AD through the inhibition of mRNA expression of T helper 2-specific cytokines and other proinflammatory cytokines.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Tabebuia/química , Animales , Peso Corporal/efectos de los fármacos , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/toxicidad , Ensayo de Inmunoadsorción Enzimática , Etanol/química , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Masculino , Ratones , Extractos Vegetales/química , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Artículo en Inglés | MEDLINE | ID: mdl-28761499

RESUMEN

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3ß (p-GSK3ß) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3ß-related caspase-3-dependent apoptosis.

14.
J Ginseng Res ; 41(3): 298-306, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28701870

RESUMEN

BACKGROUND: Compound K (CK) is a bioactive derivative of ginsenoside Rb1 in Panax ginseng (Korean ginseng). Its biological and pharmacological activities have been studied in various disease conditions, although its immunomodulatory role in innate immunity mediated by monocytes/macrophages has been poorly understood. In this study, we aimed to elucidate the regulatory role of CK on cellular events mediated by monocytes and macrophages in innate immune responses. METHODS: The immunomodulatory role of CK was explored by various immunoassays including cell-cell adhesion, fibronectin adhesion, cell migration, phagocytic uptake, costimulatory molecules, reactive oxygen species production, luciferase activity, and by the measurement of mRNA levels of proinflammatory genes. RESULTS: Compound K induced cell cluster formation through cell-cell adhesion, cell migration, and phagocytic activity, but it suppressed cell-tissue interactions in U937 and RAW264.7 cells. Compound K also upregulated the surface expression of the cell adhesion molecule cluster of differentiation (CD) 43 (CD43) and costimulatory molecules CD69, CD80, and CD86, but it downregulated the expression of monocyte differentiation marker CD82 in RAW264.7 cells. Moreover, CK induced the release of reactive oxygen species and induced messenger RNA expression of proinflammatory genes, inducible nitric oxide synthase, and tumor necrosis factor-alpha by enhancing the nuclear translocation and transcriptional activities of nuclear factor kappa-B and activator protein-1. CONCLUSION: Our results suggest that CK has an immunomodulatory role in innate immune responses through regulating various cellular events mediated by monocytes and macrophages.

15.
Mediators Inflamm ; 2017: 1506248, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680194

RESUMEN

To address how interleukin-1 receptor-associated kinase 1 (IRAK1) is controlled by other enzymes activated by toll-like receptor (TLR) 4, we investigated the possibility that spleen tyrosine kinase (Syk), a protein tyrosine kinase that is activated at an earlier stage during TLR4 activation, plays a central role in regulating the functional activation of IRAK1. Indeed, we found that overexpression of myeloid differentiation primary response gene 88 (MyD88), an adaptor molecule that drives TLR signaling, induced IRAK1 expression and that piceatannol, a Syk inhibitor, successfully suppressed the MyD88-dependent upregulation of IRAK1 under LPS treatment conditions. Interestingly, in Syk-knockout RAW264.7 cells, IRAK1 activity was almost completely blocked after LPS treatment, while providing a Syk-recovery gene to the knockout cells successfully restored IRAK1 expression. According to our measurements of IRAK1 mRNA levels, the transcriptional upregulation of IRAK1 was induced by LPS treatment between 4 and 60 min, and this can be suppressed in Syk knockout cells, providing an effect similar that that seen under piceatannol treatment. The overexpression of Syk reverses this effect and leads to a significantly higher IRAK1 mRNA level. Collectively, our results strongly suggest that Syk plays a critical role in regulating both the activity and transcriptional level of IRAK1.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Quinasa Syk/metabolismo , Animales , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Quinasa Syk/genética
16.
J Ethnopharmacol ; 206: 1-7, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28502904

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nuclear factor-kappa B (NF-κB) plays pivotal roles in inflammation. Src and Syk are two tyrosine kinases that act upstream of NF-κB signaling. Although Achyranthes aspera L. (A. aspera) has been used as a traditional medicine to treat fevers and inflammatory ailments and heal wounds, the molecular mechanisms of its anti-inflammatory actions are not yet fully understood. MATERIALS AND METHODS: In this study, we evaluated the anti-inflammatory effect of A. aspera ethanol extract (Aa-EE). To determine the mechanism by which Aa-EE dampens the inflammatory response, nitric oxide (NO) production and the mRNA expression levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) were examined by Griess assay and RT-PCR. Luciferase assays and immunoblotting were also conducted to examine how Aa-EE regulates the NF-κB pathway. RESULTS: Aa-EE reduced NO production up to 60% without any cytotoxicity. This extract was found to downregulate the mRNA expression levels of inflammatory genes. Aa-EE blocked NF-κB promoter activity induced by both TNF-α and adaptor molecule MyD88 (about 70% and 40%, respectively). Moreover, nuclear translocation of p65 and IκBα phosphorylation were also inhibited. Furthermore, Aa-EE inactivated two upstream signaling molecules, the Src and Syk kinases. In accordance with these data, the kinase activities of Src and Syk were decreased by 50% and 80%, respectively. The anti-inflammatory action of Aa-EE was also confirmed in a gastritis model. CONCLUSION: Our data suggest that Aa-EE targets NF-κB to exert its anti-inflammatory properties by suppressing Src and Syk. Therefore, our study raises the possibility that this extract can be developed as a novel natural anti-inflammatory remedy.


Asunto(s)
Achyranthes/química , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Etanol , Humanos , Masculino , Ratones , Ratones Endogámicos ICR
17.
Mediators Inflamm ; 2017: 3619879, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29317792

RESUMEN

Although osteoarthritis (OA), a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE)) on OA pathogenesis induced by monoiodoacetate (MIA) and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7). Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353). Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) signaling pathways in macrophages and chondrocytes.


Asunto(s)
Antiinflamatorios/uso terapéutico , Osteoartritis/tratamiento farmacológico , Fitoterapia , Tabebuia , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Etanol , Humanos , Mediadores de Inflamación/metabolismo , Ácido Yodoacético/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , FN-kappa B/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/metabolismo , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo
18.
J Ginseng Res ; 40(4): 431-436, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27746697

RESUMEN

BACKGROUND: Although numerous studies of the anticancer activities of Korean Red Ginseng (KRG) have been performed, the therapeutic effect of KRG on leukemia has not been fully elucidated. In this study, we investigated the antileukemia activities of KRG and its cellular and molecular mechanisms. METHODS: An established leukemia tumor model induced by xenografted T cell lymphoma (RMA cells) was used to test the therapeutic activity of KRG water extract (KRG-WE). Direct cytotoxic activity of KRG-WE was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory activities of KRG-WE were verified by immunohistochemistry, nitric oxide production assay. The inhibitory effect of KRG-WE on cell survival signaling was also examined. RESULTS: Orally administered KRG-WE reduced the sizes of tumor masses. Levels of apoptosis regulatory enzymes and cleaved forms of caspases-3 and -8 were increased by this extract. In addition, expression of matrix metalloproteinase-9, a metastasis regulatory enzyme, was decreased by KRG-WE treatment. The proportion of CD11c+ cells was remarkably increased in the KRG-treated group compared to the control group. However, KRG-WE did not show significant direct cytotoxicity against RMA cells. CONCLUSION: Our results strongly suggest that the KRG might have antileukemia activity through CD11c+ cell-mediated antitumor immunity.

19.
J Ginseng Res ; 40(3): 304-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27616908

RESUMEN

BACKGROUND: Joboksansam, Korean bird wild ginseng, is an artificially cultivated wild ginseng germinated from bird feces. Although numerous pharmacologic activities of wild ginsengs have been reported, the beneficial effect of joboksansam in cancer has not been elucidated. In this study, we investigated the in vivo and in vitro anticancer activities of joboksansam powder. METHODS: To evaluate the in vivo anticancer activity of joboksansam, we established a xenograft mouse model bearing RMA cell-derived cancer. Direct cytotoxicity induced by joboksansam powder was also investigated in vitro using (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT) assay. The inhibitory activity of this powder on the activation of cell survival signaling involving Akt and Src was examined with immunoblot analysis. RESULTS: Joboksansam powder displayed strong inhibitory activity against the increased tumor size, increased weight of total body and cancer tissues, and mortality of tumor-bearing mice. Joboksansam powder also suppressed the activation of survival regulatory enzymes Akt and Src, as assessed by phosphorylation levels in the immunoblot analysis of tumor tissues. Interestingly, the viability of RMA cells in vitro was directly decreased by joboksansam treatment. CONCLUSION: Overall, our results strongly suggest that joboksansam powder has the potential to protect against cancer generation by direct cytotoxic effects on cancer cells resulting from suppression of cell survival signaling.

20.
Molecules ; 21(6)2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338330

RESUMEN

Anthraquinone-2-carboxlic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA) was identified as one of the major anthraquinones in Brazilian taheebo. Since there was no report explaining its immunopharmacological actions, in this study, we aimed to investigate the molecular mechanism of AQCA-mediated anti-inflammatory activity using reporter gene assays, kinase assays, immunoblot analyses, and overexpression strategies with lipopolysaccharide (LPS)-treated macrophages. AQCA was found to suppress the release of nitric oxide (NO) and prostaglandin (PG) E2 from LPS-treated peritoneal macrophages without displaying any toxic side effects. Molecular analysis revealed that AQCA was able to inhibit the activation of the nuclear factor (NF)-κB and activator protein (AP)-1 pathways by direct suppression of upstream signaling enzymes including interleukin-1 receptor-associated kinase 1 (IRAK1) and spleen tyrosine kinase (Syk). Therefore, our data strongly suggest that AQCA-mediated suppression of inflammatory responses could be managed by a direct interference of signaling cascades including IRAK and Syk, linked to the activation of NF-κB and AP-1.


Asunto(s)
Antraquinonas/administración & dosificación , Inflamación/tratamiento farmacológico , Quinasas Asociadas a Receptores de Interleucina-1/biosíntesis , Quinasa Syk/biosíntesis , Factor de Transcripción AP-1/biosíntesis , Antraquinonas/química , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Brasil , Humanos , Inflamación/patología , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/patología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/biosíntesis , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Quinasa Syk/antagonistas & inhibidores , Tabebuia/química , Factor de Transcripción AP-1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...