Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 19(39): e2302418, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236206

RESUMEN

Despite the optoelectronic similarities between tin and lead halide perovskites, the performance of tin-based perovskite solar cells remains far behind, with the highest reported efficiency to date being ≈14%. This is highly correlated to the instability of tin halide perovskite, as well as the rapid crystallization behavior in perovskite film formation. In this work, l-Asparagine as a zwitterion plays a dual role in controlling the nucleation/crystallization process and improving the morphology of perovskite film. Furthermore, tin perovskites with l-Asparagine show more favorable energy-level matching, enhancing the charge extraction and minimizing the charge recombination, leading to an enhanced power conversion efficiency of 13.31% (from 10.54% without l-Asparagine) with remarkable stability. These results are also in good agreement with the density functional theory calculations. This work not only provides a facile and efficient approach to controlling the crystallization and morphology of perovskite film but also offers guidelines for further improved performance of tin-based perovskite electronic devices.

2.
Inorg Chem ; 61(36): 14361-14367, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36047720

RESUMEN

We synthesized colloidal cesium metal halide CsMX (M = Fe, Co, Ni; X = Cl, Br) nanoparticles (NPs) and assessed their crystal stability by density functional theory (DFT) calculations. We successfully synthesized Cs3FeCl5, Cs3FeBr5, Cs3CoCl5, Cs3CoBr5, CsNiCl3, and CsNiBr3 NPs. CsMX NPs with Fe and Co exhibited Cs3M1X5 and Cs2M1X4 structures depending on the reaction conditions; however, CsNiX NPs exhibited only the CsNiX3 structure. The differences in structural stability by central metal ions were explained using spin-polarized DFT calculations. The analysis revealed tetragonal Cs3M1X5 and orthorhombic Cs2M1X4 structures to have similar thermodynamic stabilities in the case of Fe and Co, whereas the hexagonal CsMX3 structure in the case of Ni was the most stable. Moreover, the calculation results were the same as the experimental results. In particular, cobalt-related Cs3CoBr5 NPs easily developed into Cs2CoCl4 nanorods with an increase in temperature.

3.
Nanotechnology ; 33(48)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35952474

RESUMEN

Toxicity is the main bottleneck for the commercialization of Pb halide perovskites. Bi has been considered a promising metal cation to replace Pb because of its comparable electronic structures with Pb and better stability. Although experimental and theoretical studies have proposed various Bi-based halides, the present achievements in photovoltaic cells and other photoelectronic device fields do not compete with Pb analogs. Thermodynamic stability, bandgap control, and enhancement of carrier transport are fundamental challenges in the context of intrinsic material properties for developing highly efficient Bi-based devices. This study evaluates the potential of Bi-based halide compounds with good stability and electronic properties through high-throughput density functional theory calculations. Lattice structures and compositions are selected based on previous reports and an open material database. Then, we expanded our dataset to cover all possible compositional variations of A- and X-sites and alloying to B-sites. We examined over six-hundred candidates and found ten new candidates that have not been reported previously. Rb3SbBiI9exhibits the best-expected efficiency for high-efficiency solar cells among selected compounds, and other compounds can be used as visible-light-generation sources. Analysis of the screening procedure revealed that vacancy-ordered (A3B2X9)-type Bi-halides exhibit significantly favorable characteristics when compared with those of double perovskites and rudorffite-like structures for Bi-based photoelectronic devices.

4.
J Am Chem Soc ; 144(1): 297-305, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958207

RESUMEN

Metal-halide perovskites (MHPs) have attracted tremendous attention as active materials in optoelectronic devices. For light-emitting diode (LED) applications, nanostructuring of MHPs is considered to be inevitable, but its light-enhancement mechanism is still elusive because the particle (or grain) size is often beyond the quantum confinement regime. As motivated by the experimental finding that the nanostructuring can change the preferred crystalline symmetry from the orthorhombic phase to the high-symmetric cubic phase, we here investigated the carrier dynamics in various polymorphic phases of CsPbBr3 using ab initio quantum dynamics simulation. We found that the cubic phase shows a smaller inelastic phonon scattering than the orthorhombic phase; the suppression of the octahedral tilt minimizes the longitudinal Br fluctuation and helps disentangle the A-site cation dynamics from the nonadiabatic carrier dynamics. We thus anticipate that our present work will offer a material design principle to enhance the quantum yield of MHPs via symmetry engineering, which will help develop highly luminescent LED technology based on MHPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA