Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Front Cell Neurosci ; 18: 1453038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355174

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by the deposition of amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) in the brain. The accumulation of these aggregated proteins causes memory and synaptic dysfunction, neuroinflammation, and oxidative stress. This research study is significant as it aims to assess the neuroprotective properties of vitamin E (VE) analog Trolox in an Aß1 - 42-induced AD mouse model. Aß1 - 42 5µL/5min/mouse was injected intracerebroventricularly (i.c.v.) into wild-type adult mice brain to induce AD-like neurotoxicity. For biochemical analysis, Western blotting and confocal microscopy were performed. Remarkably, intraperitoneal (i.p.) treatment of Trolox (30 mg/kg/mouse for 2 weeks) reduced the AD pathology by reducing the expression of Aß, phosphorylated tau (p-tau), and ß-site amyloid precursor protein cleaving enzyme1 (BACE1) in both cortex and hippocampus regions of mice brain. Furthermore, Trolox-treatment decreased neuroinflammation by inhibiting Toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (pNF-κB) and interleukin-1ß (IL-1ß), and other inflammatory biomarkers of glial cells [ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP)]. Moreover, Trolox reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (NRF2) and heme oxygenase 1 (HO1). Similarly, Trolox-induced synaptic markers, including synaptosomal associated protein 23 (SNAP23), synaptophysin (SYN), and post-synaptic density protein 95 (PSD-95), and memory functions in AD mice. Our findings could provide a useful and novel strategy for investigating new medications to treat AD-associated neurodegenerative diseases.

2.
Cancer Res Treat ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300929

RESUMEN

Purpose: Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. Materials and Methods: This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. Results: TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions (VAF) was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability (MSI), and homologous-recombination deficiency (HRD) scores, which were essential for clinical decision-making. Conclusion: TE-WGS is a comprehensive approach in personalized oncology, matching TSO500's key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.

3.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39338361

RESUMEN

Alzheimer's disease (AD) is the most predominant cause of dementia, considered a progressive decline in cognitive function that ultimately leads to death. AD has posed a substantial challenge in the records of medical science over the past century, representing a predominant etiology of dementia with a high prevalence rate. Neuroinflammation is a common characteristic of various central nervous system (CNS) pathologies like AD, primarily mediated by specialized brain immune and inflammatory cells, such as astrocytes and microglia. The present study aims to elucidate the potential mechanism of physcion that mitigates LPS-induced gliosis and assesses oxidative stress in mice. Physcion reduced the reactivity of Iba-1- and GFAP-positive cells and decreased the level of inflammatory cytokines like TNF-α and IL-1ß. Physcion also reversed the effect of LPS-induced oxidative stress by upregulating the expression of Nrf2 and HO-1. Moreover, physcion treatment reversed LPS-induced synaptic disorder by increasing the level of presynaptic protein SNAP-23 and postsynaptic protein PSD-95. Our findings may provide a contemporary theoretical framework for clinical investigations aimed at examining the pathogenic mechanisms and therapeutic approaches for neuroinflammation and AD.

4.
BMC Pediatr ; 24(1): 563, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232714

RESUMEN

BACKGROUND: Limited research has analyzed the association between diastolic blood pressure (DBP) and survival after pediatric cardiopulmonary resuscitation (CPR). This study aimed to explore the association between post-resuscitation diastolic blood pressure and survival in pediatric patients who underwent CPR. METHOD: This retrospective single-center study included pediatric patients admitted to the pediatric intensive care unit of Asan Medical Center between January 2016 to November 2022. Patients undergoing extracorporeal CPR and those with unavailable data were excluded. The primary endpoint was survival to ICU discharge. RESULTS: A total of 106 patients were included, with 67 (63.2%) achieving survival to ICU discharge. Multivariate logistic regression analysis identified DBP within 1 h after ROSC as the sole significant variable (p = 0.002, aOR, 1.043; 95% CI, 1.016-1.070). Additionally, DBP within 1 h demonstrated an area under the ROC curve of 0.7 (0.592-0.809) for survival to ICU discharge, along with mean blood pressure within the same timeframe. CONCLUSION: Our study highlights the importance of DBP within 1-hour post-ROSC as a significant prognostic factor for survival to ICU discharge. However, further validation through further prospective large-scale studies is warranted to confirm the appropriate post-resuscitation DBP of pediatric patients.


Asunto(s)
Presión Sanguínea , Reanimación Cardiopulmonar , Paro Cardíaco , Unidades de Cuidado Intensivo Pediátrico , Humanos , Estudios Retrospectivos , Masculino , Femenino , Reanimación Cardiopulmonar/métodos , Paro Cardíaco/terapia , Paro Cardíaco/mortalidad , Preescolar , Niño , Lactante , Tasa de Supervivencia , Diástole , Adolescente , Pronóstico
5.
Front Pharmacol ; 15: 1443552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185307

RESUMEN

Intense neuroinflammation contributes to neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Lipopolysaccharides (LPSs) are an integral part of the cell wall of Gram-negative bacteria that act as pathogen-associated molecular patterns (PAMPs) and potentially activate the central nervous system's (CNS) immune system. Microglial cells are the local macrophages of the CNS and have the potential to induce and control neuroinflammation. This study aims to evaluate the anti-inflammatory and antioxidant effect of kojic acid against the toxic effects of LPSs, such as neuroinflammation-induced neurodegeneration and cognitive decline. The C57BL/6N mice were subjected to LPS injection for 2 weeks on alternate days (each mouse received 0.25 mg/kg/i.p. for a total of seven doses), and kojic acid was administered orally for 3 weeks consecutively (50 mg/kg/mouse, p. o). Bacterial endotoxins, or LPSs, are directly attached to TLR4 surface receptors of microglia and astrocytes and alter the cellular metabolism of immune cells. Intraperitoneal injection of LPS triggers the toll-like receptor 4 (TLR4), phospho-nuclear factor kappa B (p-NFκB), and phospho-c-Jun n-terminal kinase (p-JNK) protein expressions in the LPS-treated group, but these expression levels were significantly downregulated in the LPS + KA-treated mice brains. Prolong neuroinflammation leads to the generation of reactive oxygen species (ROS) followed by a decrease in nuclear factor erythroid-2-related factor 2 (Nrf2) and the enzyme hemeoxygenase 1 (HO-1) expression in LPS-subjected mouse brains. Interestingly, the levels of both Nrf-2 and HO-1 increased in the LPS + KA-treated mice group. In addition, kojic acid inhibited LPS-induced TNF-α and IL-1ß production in mouse brains. These results indicated that kojic acid may suppress LPS-induced neuroinflammation and oxidative stress in male wild-type mice brains (in both the cortex and the hippocampus) by regulating the TLR4/NF-κB signaling pathway.

6.
Ageing Res Rev ; 100: 102447, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111409

RESUMEN

Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.


Asunto(s)
Adiponectina , Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Adiponectina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
7.
Antioxidants (Basel) ; 13(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061930

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aß) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aß cascade and oxidative stress in AD pathogenesis is like a "chicken and egg" story, with the etiology of the disease regarding these two factors remaining a question of "which comes first." However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aß therapy to decrease ROS, Aß burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aß concerning current anti-Aß therapy. Additionally, we discuss future strategies for the development of more Aß-targeted approaches and the optimization of AD treatment and mitigation.

8.
Front Nutr ; 11: 1414696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050141

RESUMEN

Neuroinflammation includes the activation of immune glial cells in the central nervous system, release pro-inflammatory cytokines, which disrupt normal neural function and contribute to various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, and stroke. AD is characterized by various factors including amyloidogenesis, synaptic dysfunction, memory impairment and neuroinflammation. Lipopolysaccharide (LPS) constitutes a vital element of membrane of the gram-negative bacterial cell, triggering vigorous neuroinflammation and facilitating neurodegeneration. Lupeol, a naturally occurring pentacyclic triterpene, has demonstrated several pharmacological properties, notably its anti-inflammatory activity. In this study, we evaluated the anti-inflammatory and anti-Alzheimer activity of lupeol in lipopolysaccharide (LPS)-injected mice model. LPS (250ug/kg) was administered intraperitoneally to C57BL/6 N male mice for 1 week to induce neuroinflammation and cognitive impairment. For biochemical analysis, acetylcholinesterase (AChE) assay, western blotting and confocal microscopy were performed. AChE, western blot and immunofluorescence results showed that lupeol treatment (50 mg/kg) along with LPS administration significantly inhibited the LPS-induced activation of neuroinflammatory mediators and cytokines like nuclear factor (NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase (COX-2) and interleukin (IL-1ß). Furthermore, we found that LPS-induced systemic inflammation lead to Alzheimer's symptoms as LPS treatment enhances level of amyloid beta (Aß), amyloid precursor protein (APP), Beta-site APP cleaving enzyme (BACE-1) and hyperphosphorylated Tau (p-Tau). Lupeol treatment reversed the LPS-induced elevated level of Aß, APP, BACE-1 and p-Tau in the hippocampus, showing anti-Alzheimer's properties. It is also determined that lupeol prevented LPS-induced synaptic dysfunction via enhanced expression of pre-and post-synaptic markers like SNAP-23, synaptophysin and PSD-95. Overall, our study shows that lupeol prevents memory impairment and synaptic dysfunction via inhibition of neuroinflammatory processes. Hence, we suggest that lupeol might be a useful therapeutic agent in prevention of neuroinflammation-induced neurological disorders like AD.

9.
Nat Commun ; 15(1): 4388, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782901

RESUMEN

Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Perfilación de la Expresión Génica/métodos , Macrófagos/metabolismo , Macrófagos/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
10.
IEEE Trans Image Process ; 33: 2979-2994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640048

RESUMEN

Many studies have attempted to classify small drones in response to threats posed by the technical progress of small drones. Recently, small drones have been classified utilizing convolutional neural networks (CNNs) with micro-Doppler signature (MDS) images generated from frequency-modulated continuous-wave (FMCW) radars. This study proposes a comprehensive method for classifying small drones in real-time using high-quality MDS images and an ultra-lightweight CNN. The proposed comprehensive method comprises an MDS image generation technique, which can improve the quality of MDS images generated via FMCW radars, and the ultra-lightweight CNN with high accuracy performance despite its remarkable lightness. Experimental results show that the proposed MDS image generation technique increases the accuracy of CNNs by enhancing the MDS image quality. This is further verified using the results of uncertainty quantification. The proposed ultra-lightweight CNN significantly decreases the computational cost while achieving high accuracy. Finally, we demonstrate that the proposed comprehensive method successfully classifies small drones from far distances with high efficiency and accuracy: the maximum and average accuracies for classification are 100% and 99.21%, respectively, and the numbers of parameters, nodes, and floating-point operations of the proposed ultra-lightweight CNN are approximately 4.88 K, 21.51 K, and 31.52 M, respectively.

11.
Front Bioeng Biotechnol ; 12: 1294658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38600941

RESUMEN

The facet joint contributes to lumbar spine stability as it supports the weight of body along with the intervertebral discs. However, most studies on the causes of degenerative lumbar diseases focus on the intervertebral discs and often overlook the facet joints. This study aimed to investigate the impact of facet joint degeneration on the degenerative changes and diseases of the lumbar spine. A finite element model of the lumbar spine (L1-S1) was fabricated and validated to study the biomechanical characteristics of the facet joints. To simulate degeneration of the facet joint, the model was divided into four grades based on the number of degenerative segments (L4-L5 or L4-S1) and the contact condition between the facet joint surfaces. Finite element analysis was performed on four spine motions: flexion, extension, lateral bending, and axial torsion, by applying a pure moment to the upper surface of L1. Important parameters that could be used to confirm the effect of facet joint degeneration on the lumbar spine were calculated, including the range of motion (ROM) of the lumbar segments, maximum von Mises stress on the intervertebral discs, and reaction force at the facet joint. Facet joint degeneration affected the biomechanical characteristics of the lumbar spine depending on the movements of the spine. When analyzed by dividing it into degenerative onset and onset-adjacent segments, lumbar ROM and the maximum von Mises stress of the intervertebral discs decreased as the degree of degeneration increased in the degenerative onset segments. The reaction force at the facet joint decreased with flexion and increased with lateral bending and axial torsion. In contrast, lumbar ROM of the onset-adjacent segments remained almost unchanged despite severe degeneration of the facet joint, and the maximum von Mises stress of the intervertebral discs increased with flexion and extension but decreased with lateral bending and axial torsion. Additionally, the facet joint reaction force increased with extension, lateral bending, and axial rotation. This analysis, which combined the ROM of the lumbar segment, maximum von Mises stress on the intervertebral disc, and facet joint reaction force, confirmed the biomechanical changes in the lumbar spine due to the degeneration of isolated facet joints under the load of spinal motion. In the degenerative onset segment, spinal instability decreased, whereas in the onset-adjacent segment, a greater load was applied than in the intact state. When conducting biomechanical studies on the lumbar spine, considering facet joint degeneration is important since it can lead to degenerative spinal diseases, including adjacent segment diseases.

12.
Diagn Progn Res ; 8(1): 6, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561864

RESUMEN

Acute pancreatitis (AP) is an acute inflammatory disorder that is common, costly, and is increasing in incidence worldwide with over 300,000 hospitalizations occurring yearly in the United States alone. As its course and outcomes vary widely, a critical knowledge gap in the field has been a lack of accurate prognostic tools to forecast AP patients' outcomes. Despite several published studies in the last three decades, the predictive performance of published prognostic models has been found to be suboptimal. Recently, non-regression machine learning models (ML) have garnered intense interest in medicine for their potential for better predictive performance. Each year, an increasing number of AP models are being published. However, their methodologic quality relating to transparent reporting and risk of bias in study design has never been systematically appraised. Therefore, through collaboration between a group of clinicians and data scientists with appropriate content expertise, we will perform a systematic review of papers published between January 2021 and December 2023 containing artificial intelligence prognostic models in AP. To systematically assess these studies, the authors will leverage the CHARMS checklist, PROBAST tool for risk of bias assessment, and the most current version of the TRIPOD-AI. (Research Registry ( http://www.reviewregistry1727 .).

13.
ACS Appl Mater Interfaces ; 16(6): 7875-7882, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38266383

RESUMEN

This study proposes the use of physical unclonable functions employing circularly polarized light emission (CPLE) from nematic liquid crystal (NLC) ordering directed by helical nanofilaments in a mixed system composed of a calamitic NLC mixture and a bent-core molecule. To achieve this, an intrinsically nonemissive NLC is blended with a high concentration of a luminescent rod-like dye, which is miscible up to 10 wt % in the calamitic NLC without a significant decrease in the degree of alignment. The luminescence dissymmetry factor of CPLEs in the mixed system strongly depends on the degree of alignment of the dye-doped NLCs. Furthermore, the mixed system prepared in this study exhibits two randomly generated chiral domains with CPLEs of opposite signs. These chiral domains are characterized not only by their CPLE performances but also by their ability to generate random patterns up to several millimeters, making them promising candidates for high-performance secure authentication applications.

14.
ACS Nano ; 18(1): 909-918, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37991339

RESUMEN

Chiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed. This method eliminates the need for additional molecular design. In this process, HOIP precursors are incorporated into a porous cholesteric polymer film, and two-dimensional (2D) HOIPs grow inside the nanopores. Circularly polarized light emission (CPLE) was observed even though the selective reflection band of the cholesteric polymer films containing a representative HOIP deviated from the emission wavelength of the 2D HOIP. This effect was confirmed by the induced circular dichroism (CD) observed in the absorbance band of the HOIP. The observed CPLE and CD are attributed to the chirality induced by the template in the originally nonchiral 2D HOIP. Additionally, the developed 2D HOIP exhibited a long exciton lifetime and good stability under harsh conditions. These findings provide valuable insights into the development and design of innovative optoelectronic materials.

15.
Nutrients ; 15(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38068844

RESUMEN

Alzheimer's disease (AD), is a progressive neurodegenerative disorder that involves the deposition of ß-amyloid plaques and the clinical symptoms of confusion, memory loss, and cognitive dysfunction. Despite enormous progress in the field, no curative treatment is available. Therefore, the current study was designed to determine the neuroprotective effects of N-methyl-(2S, 4R)-Trans-4-hydroxy-L-proline (NMP) obtained from Sideroxylon obtusifolium, a Brazilian folk medicine with anti-inflammatory and anti-oxidative properties. Here, for the first time, we explored the neuroprotective role of NMP in the Aß1-42-injected mouse model of AD. After acclimatization, a single intracerebroventricular injection of Aß1-42 (5 µL/5 min/mouse) in C57BL/6N mice induced significant amyloidogenesis, reactive gliosis, oxidative stress, neuroinflammation, and synaptic and memory deficits. However, an intraperitoneal injection of NMP at a dose of (50 mg/kg/day) for three consecutive weeks remarkably decreased beta secretase1 (BACE-1) and Aß, activated the astrocyte and microglia expression level as well as downstream inflammatory mediators such as pNF-ĸB, TNF-α, and IL-1ß. NPM also strongly attenuated oxidative stress, as evaluated by the expression level of NRF2/HO-1, and synaptic failure, by improving the level of both the presynaptic (SNAP-25 and SYN) and postsynaptic (PSD-95 and SNAP-23) regions of the synapses in the cortexes and hippocampi of the Aß1-42-injected mice, contributing to cognitive improvement in AD and improving the behavioral deficits displayed in the Morris water maze and Y-maze. Overall, our data suggest that NMP provides potent multifactorial effects, including the inhibition of amyloid plaques, oxidative stress, neuroinflammation, and cognitive deficits.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedades Neuroinflamatorias , Placa Amiloide , Ratones Endogámicos C57BL , Péptidos beta-Amiloides/metabolismo , Trastornos de la Memoria/metabolismo , Modelos Animales de Enfermedad
16.
Vaccines (Basel) ; 11(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140224

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease that affects the central nervous system, specifically the motor system. It is mainly caused by the loss of dopamine due to the accumulation of α-synuclein (α-syn) protein in the striatum and substantia nigra pars compacta (SNpc). Previous studies have reported that immunization may be a potential preventive strategy for neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Therefore, the aim of the study was to design an α-syn specific epitope vaccine and investigate its effect in PD-related pathophysiology using an α-syn-induced mouse model. We used an in silico model to identify and design a non-toxic α-syn-based peptide epitope vaccine and, to overcome poor immunogenicity, the vaccine was coupled with immunogenic carrier proteins, i.e., ovalbumin (OVA) and keyhole limpet haemocyanin (KLH). Our results showed that vaccinated PD mouse models, especially with vaccines with carrier proteins, improved in motor functions compared with the non-vaccinated PD model. Additionally, the vaccinated groups showed increased immunoglobulin G (IgG) levels in the spleen and plasma as well as decreased interleukin-10 (IL-10) levels in the plasma. Furthermore, vaccinated groups, especially OVA and KLH groups, showed decrease in α-syn levels and increased dopamine-related markers, i.e., tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and dopamine transporter (DAT), and autophagy activities in the striatum and SNpc. Lastly, our data showed decreased neuroinflammation by reducing the activation of microglia and astrocytes and pro-inflammatory cytokines in the immunized groups, especially with OVA and KLH carrier proteins. Overall, these results suggest that vaccination, especially with immunogenic carrier proteins, is effective in reducing the accumulation of α-syn aggregates in the brain and ameliorate PD-related pathophysiology. Hence, further development of this approach might have a potential role in preventing the development of PD.

17.
J Biomed Sci ; 30(1): 66, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568205

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Both environmental and genetic aspects are involved in the pathogenesis of PD. Osmotin is a structural and functional homolog of adiponectin, which regulates the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) via adiponectin receptor 1 (AdipoR1), thus attenuating PD-associated pathology. Therefore, the current study investigated the neuroprotective effects of osmotin using in vitro and in vivo models of PD. METHODS: The study used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and neuron-specific enolase promoter human alpha-synuclein (NSE-hαSyn) transgenic mouse models and 1-methyl-4-phenylpyridinium (MPP+)- or alpha-synuclein A53T-treated cell models. MPTP was injected at a dose of 30 mg/kg/day for five days, and osmotin was injected twice a week at a dose of 15 mg/kg for five weeks. We performed behavioral tests and analyzed the biochemical and molecular changes in the substantia nigra pars compacta (SNpc) and the striatum. RESULTS: Based on our study, osmotin mitigated MPTP- and α-synuclein-induced motor dysfunction by upregulating the nuclear receptor-related 1 protein (Nurr1) transcription factor and its downstream markers tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2). From a pathological perspective, osmotin ameliorated neuronal cell death and neuroinflammation by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, osmotin alleviated the accumulation of α-synuclein by promoting the AMPK/mammalian target of rapamycin (mTOR) autophagy signaling pathway. Finally, in nonmotor symptoms of PD, such as cognitive deficits, osmotin restored synaptic deficits, thereby improving cognitive impairment in MPTP- and α-synuclein-induced mice. CONCLUSIONS: Therefore, our findings indicated that osmotin significantly rescued MPTP/α-synuclein-mediated PD neuropathology. Altogether, these results suggest that osmotin has potential neuroprotective effects in PD neuropathology and may provide opportunities to develop novel therapeutic interventions for the treatment of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Sustancia Negra/metabolismo , Transducción de Señal , Neuronas Dopaminérgicas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mamíferos
18.
J Ultrasound Med ; 42(12): 2757-2764, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555776

RESUMEN

OBJECTIVES: Testicular torsion (TT) is a pediatric surgical emergency that requires prompt treatment. This study investigated the feasibility of point-of-care ultrasound (POCUS) for diagnosing TT in the pediatric emergency department (ED). METHODS: We retrospectively reviewed the medical records of patients, aged 18 years or younger, who visited a university-affiliated hospital pediatric ED with acute scrotal pain without trauma history and underwent diagnostic ultrasounds between January 2010 and October 2022. RESULTS: This study included 731 patients (median age: 9 years), Of these, 315 (43%) were in the POCUS-performed group: 188 in the POCUS-only group, and 127 in the POCUS-and-RADUS group. The other 416 patients (56.9%) were in the RADUS-only group. In total, 45 patients (6.2%) were diagnosed with TT (19 in the POCUS-performed group and 26 in the RADUS-only group). The sensitivity, specificity, and positive and negative predictive values of POCUS for diagnosing TT were 94.7%, 92.9%, 46.2%, and 99.6%, respectively. The median time to perform POCUS was shorter than RADUS (23 versus 61 minutes, P < .001). The POCUS-performed group had a shorter ED length of stay than the RADUS-only group (93 versus 170 minutes, P < .001). Among the patients diagnosed with TT, performing POCUS first did not significantly delay the ED process, including time to operation (250 versus 205 minutes, P = .142). CONCLUSIONS: For patients with acute scrotal pain, evaluation performed by pediatric emergency physicians using POCUS performs well in screening TT, and can decrease length of stay in the ED.


Asunto(s)
Torsión del Cordón Espermático , Masculino , Niño , Humanos , Torsión del Cordón Espermático/diagnóstico por imagen , Sistemas de Atención de Punto , Estudios Retrospectivos , Ultrasonografía , Servicio de Urgencia en Hospital , Dolor
19.
Nutrients ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447385

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Triterpenos , Humanos , Anciano , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Enfermedad de Alzheimer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico
20.
Antioxidants (Basel) ; 12(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37372012

RESUMEN

Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aß1-42)-induced oxidative stress and memory impairments. Aß1-42 (5 µL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aß-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aß-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aß and BACE-1 expression in the Aß-induced AD mice model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...