Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Health Perspect ; 130(1): 17011, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35072517

RESUMEN

BACKGROUND: Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE: This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS: Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS: At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION: These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.


Asunto(s)
Arsénico , Empalme Alternativo , Arsénico/metabolismo , Arsénico/toxicidad , Células HaCaT , Humanos , Queratinocitos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteómica
2.
Nucleic Acids Res ; 48(W1): W300-W306, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32286627

RESUMEN

The rMAPS2 (RNA Map Analysis and Plotting Server 2) web server, freely available at http://rmaps.cecsresearch.org/, has provided the high-throughput sequencing data research community with curated tools for the identification of RNA binding protein sites. rMAPS2 analyzes differential alternative splicing or CLIP peak data obtained from high-throughput sequencing data analysis tools like MISO, rMATS, Piranha, PIPE-CLIP and PARalyzer, and then, graphically displays enriched RNA-binding protein target sites. The initial release of rMAPS focused only on the most common alternative splicing event, skipped exon or exon skipping. However, there was a high demand for the analysis of other major types of alternative splicing events, especially for retained intron events since this is the most common type of alternative splicing in plants, such as Arabidopsis thaliana. Here, we expanded the implementation of rMAPS2 to facilitate analyses for all five major types of alternative splicing events: skipped exon, mutually exclusive exons, alternative 5' splice site, alternative 3' splice site and retained intron. In addition, by employing multi-threading, rMAPS2 has vastly improved the user experience with significant reductions in running time, ∼3.5 min for the analysis of all five major alternative splicing types at once.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ARN/metabolismo , Programas Informáticos , Animales , Arabidopsis/genética , Sitios de Unión , Bovinos , Exones , Humanos , Intrones , Ratones , Motivos de Nucleótidos , ARN/química , ARN/metabolismo , Sitios de Empalme de ARN , Ratas , Análisis de Secuencia de ARN
4.
iScience ; 21: 308-327, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31678913

RESUMEN

Plant exosomes protect plants against infection; however, whether edible plant exosomes can protect mammalian hosts against infection is not known. In this study, we show that ginger exosome-like nanoparticles (GELNs) are selectively taken up by the periodontal pathogen Porphyromonas gingivalis in a GELN phosphatidic acid (PA) dependent manner via interactions with hemin-binding protein 35 (HBP35) on the surface of P. gingivalis. Compared with PA (34:2), PA (34:1) did not interact with HBP35, indicating that the degree of unsaturation of PA plays a critical role in GELN-mediated interaction with HBP35. On binding to HBP35, pathogenic mechanisms of P. gingivalis were significantly reduced following interaction with GELN cargo molecules, including PA and miRs. These cargo molecules interacted with multiple pathogenic factors in the recipient bacteria simultaneously. Using edible plant exosome-like nanoparticles as a potential therapeutic agent to prevent/treat chronic periodontitis was further demonstrated in a mouse model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...