Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39185177

RESUMEN

Neuronal diversity and function are intricately linked to the dynamic regulation of RNA metabolism, including splicing, localization, and translation. Electrophysiologic studies of synaptic plasticity, models for learning and memory, are disrupted in Fragile X Syndrome (FXS). FXS is characterized by the loss of FMRP, an RNA-binding protein (RBP) known to bind and suppress translation of specific neuronal RNAs. Since molecular studies have demonstrated that synaptic plasticity in CA1 excitatory hippocampal neurons is protein-synthesis dependent, together these observations have suggested a potential role for FMRP in synaptic plasticity in FXS. To explore this model, we developed a new experimental platform, Opto-CLIP, to integrate optogenetics with cell-type specific FMRP CLIP and RiboTag in CA1 hippocampal neurons, allowing investigation of FMRP-regulated dynamics after neuronal activation. We tracked changes in FMRP binding and ribosome-associated RNA profiles 30 minutes after neuronal activation. Our findings reveal a significant reduction in FMRP-RNA binding to transcripts encoding nuclear proteins, suggesting FMRP translational inhibition may be de-repressed to allow rapid translational responses required for neuronal homeostasis. In contrast, FMRP binding to transcripts encoding synaptic targets were generally stable after activation, but all categories of targets demonstrated variability in FMRP translational control. Opto-CLIP revealed differential regulation of subsets of transcripts within CA1 neurons rapidly after depolarization, and offers promise as a generally useful platform to uncover mechanisms of RBP-mediated RNA regulation in the context of synaptic plasticity.

3.
Toxicol Res ; 40(2): 273-283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525133

RESUMEN

Smoking is a well-established risk factor for various pathologies, including pulmonary diseases, cardiovascular disorders, and cancers. The toxic effects of cigarette smoke (CS) are mediated through multiple pathways and diverse mechanisms. A key pathogenic factor is oxidative stress, primarily induced by excessive formation of reactive oxygen species. However, it remains unclear whether smoking directly induces systemic oxidative stress or if such stress is a secondary consequence. This study aimed to determine whether short-term inhalation exposure to CS induces oxidative stress in extrapulmonary organs in addition to the lung in a murine model. In the experiment, 3R4F reference cigarettes were used to generate CS, and 8-week-old male BALB/c mice were exposed to CS at a total particulate matter concentration of either 0 or 800 µg/L for four consecutive days. CS exposure led to an increase in neutrophils, eosinophils, and total cell counts in bronchoalveolar lavage fluid. It also elevated levels of lactate dehydrogenase and malondialdehyde (MDA), markers indicative of tissue damage and oxidative stress, respectively. Conversely, no significant changes were observed in systemic oxidative stress markers such as total oxidant scavenging capacity, MDA, glutathione (GSH), and the GSH/GSSG ratio in blood samples. In line with these findings, CS exposure elevated NADPH oxidase (NOX)-dependent superoxide generation in the lung but not in other organs like the liver, kidney, heart, aorta, and brain. Collectively, our results indicate that short-term exposure to CS induces inflammation and oxidative stress in the lung without significantly affecting oxidative stress in extrapulmonary organs under the current experimental conditions. NOX may play a role in these pulmonary-specific events.

4.
Neurobiol Stress ; 29: 100606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292517

RESUMEN

Synaptic plasticity in the amygdala plays an essential role in the formation and inhibition of fear memory; however, this plasticity has mainly been studied in the lateral amygdala, making it largely uninvestigated in other subnuclei. Here, we investigated long-term potentiation (LTP) and long-term depression (LTD) in the basolateral amygdala (BLA) to the medial division of the central amygdala (CEm) synapses of juvenile C57BL/6N (B6) and 129S1/SvImJ (S1) mice. We found that in naïve B6 and S1 mice, LTP was not induced at the BLA to CEm synapses, whereas fear conditioning lowered the threshold for LTP induction in these synapses of both B6 and S1 mice. Interestingly, fear extinction disrupted the induction of LTP at the BLA to CEm synapses of B6 mice, whereas LTP was left intact in S1 mice. Both low-frequency stimulation (LFS) and modest LFS (mLFS) induced LTD in naïve B6 and S1 mice, suggesting that the BLA to CEm synapses express bidirectional plasticity. Fear conditioning disrupted both types of LTD induction selectively in S1 mice and LFS-LTD, presumably NMDAR-dependent LTD was partially recovered by fear extinction. However, mLFS-LTD which has been known to be endocannabinoid receptor 1 (CB1R)-dependent was not induced after fear extinction in both mouse strains. Our observations suggest that fear conditioning enhances LTP while fear extinction diminishes LTP at the BLA to the CEm synapses of B6 mice with successful extinction. Considering that S1 mice showed strong fear conditioning and impaired extinction, strong fear conditioning in the S1 strain may be related to disrupted LTD, and impaired extinction may be due to constant LTP and weak LFS-LTD at the BLA to CEm synapses. Our study contributes to the further understanding of the dynamics of synaptic potentiation and depression between the subnuclei of the amygdala in juvenile mice after fear conditioning and extinction.

5.
Pharmacol Res ; 190: 106734, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36933754

RESUMEN

Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.


Asunto(s)
Habénula , Núcleo Interpeduncular , Motivación , Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Emociones
6.
Proc Natl Acad Sci U S A ; 119(49): e2211454119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442105

RESUMEN

Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.


Asunto(s)
Hormona Liberadora de Corticotropina , Corteza Prefrontal , Femenino , Masculino , Animales , Ratones , Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina , Células Piramidales , Interneuronas
7.
Korean J Parasitol ; 59(1): 35-45, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33684985

RESUMEN

Adult echinostomes having 37 collar spines collected from the intestine of Pitalah ducks in Aceh Province, Indonesia in 2018 were morphologically and molecularly determined to be Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae). Among 20 ducks examined, 7 (35.0%) were found to be infected with this echinostome, and the number of flukes collected was 48 in total with average 6.9 (1-17) worms per duck. The adult flukes were 7.2 (6.1-8.5) mm in length and 1.2 (1.0-1.4) mm in width (pre-ovarian or testicular level) and characterized by having a head collar armed with 37 collar spines (dorsal spines arranged in 2 alternating rows), including 5 end group spines, and variable morphology of the testes, irregularly or deeply lobed (3-5 lobes) at times with horizontal extension. The eggs within the worm uterus were 93 (79-105) µm long and 62 (56-70) µm wide. These morphological features were consistent with both E. miyagawai and Echinostoma robustum, for which synonymy to each other has been raised. Sequencing of 2 mitochondrial genes, cox1 and nad1, revealed high homology with E. miyagawai (98.6-100% for cox1 and 99.0-99.8% for nad1) and also with E. robustum (99.3-99.8% for nad1) deposited in GenBank. We accepted the synonymy between the 2 species and diagnosed our flukes as E. miyagawai (syn. E. robustum) with redescription of its morphology. Further studies are required to determine the biological characteristics of E. miyagawai in Aceh Province, Indonesia, including the intermediate host and larval stage information.


Asunto(s)
Patos/parasitología , Echinostomatidae/aislamiento & purificación , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/parasitología , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología , Animales , Echinostomatidae/anatomía & histología , Echinostomatidae/clasificación , Echinostomatidae/genética , Genes de Helminto/genética , Genes Mitocondriales/genética , Interacciones Huésped-Parásitos , Indonesia/epidemiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32645967

RESUMEN

Myostatin A55T genotype is one of the candidates showing inter-individual variation in skeletal muscle phenotypes. The aim of this study was to investigate the effect of the myostatin A55T genotype on markers of muscle damage after eccentric exercise. Forty-eight young, healthy male college students (age = 24.8 ± 2.2 years, height = 176.7 ± 5.3 cm, weight = 73.7 ± 8.3 kg) were enrolled in this study, and muscle damage was induced through 50 reps of maximal eccentric muscle contraction. As markers of muscle damage, maximal isometric strength (MIS), muscle soreness, creatine kinase (CK), and aspartate transaminase (AST) were measured. Myostatin A55T genotypes were classified into homozygous myostatin A55T allele (AA, n = 34, 72%), heterozygous myostatin A55T allele (AT, n = 13, 26%), and homozygous mutant carriers (TT, n = 1, 2%). After eccentric exercise, the subjects with heterozygous for AT showed markedly quicker MIS recovery compared to the AA group (p = 0.042). However, there were no significant variations in muscle soreness (p = 0.379), CK (p = 0.955), and AST (p = 0.706) among the groups. These results suggest that AT in myostatin A55T genotype may be associated with quicker strength recovery following exercise-induced muscle damage.


Asunto(s)
Pueblo Asiatico/genética , Ejercicio Físico/fisiología , Fuerza Muscular/fisiología , Mialgia/etiología , Miostatina/genética , Genotipo , Humanos , Masculino , Contracción Muscular/genética , Contracción Muscular/fisiología , Fuerza Muscular/genética , Músculo Esquelético/fisiología , Polimorfismo de Nucleótido Simple , Recuperación de la Función , Entrenamiento de Fuerza
9.
Food Chem Toxicol ; 136: 110988, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31759066

RESUMEN

Smoking is an acknowledged risk factor for vascular disorders, and vascular complication is a main outcome of diabetes. Hence, we investigated the impact of cigarette smoke on blood vessels in diabetes, postulating that smoking might aggravate diabetic vascular impairment. Sprague-Dawley rats were divided into four groups: control, cigarette smoke-exposed, diabetic, and cigarette smoke-exposed diabetic groups. Streptozotocin-induced diabetic rats were exposed to cigarette smoke by inhalation at total particulate matter concentration of 200 µg/L for 4 h/day, 5 day/week for a total of 4 weeks. Diabetes caused structural change of aorta, but additional cigarette smoke exposure did not induce further alteration. Collagen, a marker for fibrosis, was increased in media of diabetic aorta, and this increase was augmented by cigarette smoke. Cigarette smoke induced endothelial nitric oxide synthase (eNOS) uncoupling in the diabetic group. Malondialdehyde was increased and glutathione was decreased in blood from diabetes, but these effects were not exaggerated by cigarette smoke. Cigarette smoke caused NADPH oxidase (NOX) 2 expression in diabetic aorta and enhanced diabetes-induced NOX4 expression in aorta. Taken together, cigarette smoke exposure can aggravate vascular fibrosis and induce eNOS uncoupling in diabetes under experimental condition, suggesting that smoking might exacerbate diabetic vascular impairments.


Asunto(s)
Aorta/efectos de los fármacos , Colágeno/metabolismo , Angiopatías Diabéticas/fisiopatología , Exposición por Inhalación/efectos adversos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Animales , Aorta/metabolismo , Aorta/patología , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Ratas Sprague-Dawley , Estreptozocina
10.
Mol Neurobiol ; 57(2): 710-721, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31463877

RESUMEN

129S1/SvImJ (S1) mice exhibit selective impairments in fear extinction, though the mechanisms underlying these impairments are not fully understood. The medial prefrontal cortex (mPFC) consists of the prelimbic cortex (PL) and infralimbic cortex (IL), which are known to be involved in fear conditioning and extinction, respectively. The PL and IL project to the basolateral amygdala (BLA) that also plays an important role in both mechanisms. In the present study, we utilized optogenetic and electrophysiological approaches to measure inhibitory/excitatory ratios (I/E ratios) in mPFC-BLA circuits of S1 and control C57BL/6 (B6) mice following fear conditioning and extinction. As suggested previously, PL inputs to the BLA became more excitatory after fear conditioning in B6 mice. S1 mice also exhibited strengthened PL-BLA circuit following fear conditioning. Interestingly, fear extinction restored PL-BLA circuit strength to levels comparable to the baseline in B6 mice. However, PL-BLA circuit strength remained abnormally high even after extinction in S1 mice. The IL-BLA circuit became more inhibitory in B6 mice after fear extinction, whereas extinction failed to change the excitability of the IL-BLA circuit in S1 mice. These data suggest that the fear extinction impairments observed in S1 mice may be due to constantly decreased I/E balance in the PL-BLA circuit and lack of changes in I/E balance in the IL-BLA circuit. This further suggests that investigation of both pathways is instrumental in developing more effective therapeutics for psychopathologies that involve impairments in fear extinction, such as chronic pain and posttraumatic stress disorder.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Corteza Cerebral/fisiopatología , Extinción Psicológica , Miedo/fisiología , Red Nerviosa/fisiopatología , Animales , Glutamatos/metabolismo , Ratones Endogámicos C57BL , Modelos Neurológicos , Sinapsis/metabolismo , Transmisión Sináptica
11.
Sci Rep ; 9(1): 11490, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391512

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and repetitive/restricted behaviors. Although gene-environment interactions may explain the heterogeneous etiology of ASD, it is still largely unknown how the gene-environment interaction affects behavioral symptoms and pathophysiology in ASD. To address these questions, we used Cntnap2 knockout mice (genetic factor, G) exposed to valproic acid during embryonic development (environmental factor, E) as a gene-environment interaction (G × E) model. Paradoxically, the social deficits observed in the respective G and E models were improved in the G × E model; however, the high seizure susceptibility was more severe in the G × E -model than in the G and E models. Repetitive self-grooming and hyperactivity did not differ among the three models. The amplitudes of miniature excitatory postsynaptic currents in layer 2/3 pyramidal neurons of the medial prefrontal cortex were aberrant and similar in the G × E model when compared to the control group. Our findings suggest that the interaction of two risk factors does not always aggravate ASD symptoms but can also alleviate them, which may be key to understanding individual differences in behavioral phenotypes and symptom intensity.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Interacción Gen-Ambiente , Exposición Materna/efectos adversos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/fisiopatología , Ácido Valproico/toxicidad , Animales , Trastorno del Espectro Autista/etiología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Aseo Animal/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Noqueados , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Factores de Riesgo , Conducta Estereotipada/efectos de los fármacos
12.
Front Cell Neurosci ; 13: 99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941016

RESUMEN

Fear extinction diminishes conditioned fear responses and impaired fear extinction has been reported to be related to anxiety disorders such as post-traumatic stress disorder (PTSD). We and others have reported that 129S1/SvImJ (129S1) strain of mice showed selective impairments in fear extinction following successful auditory or contextual fear conditioning. To investigate brain regions involved in the impaired fear extinction of 129S1 mice, we systemically analyzed c-Fos expression patterns before and after contextual fear conditioning and extinction. After fear conditioning, 129S1 mice showed significantly increased c-Fos expression in the medial division of the central amygdala (CEm), prelimbic (PL) cortex of the medial prefrontal cortex (mPFC), and dorsal CA3 of the hippocampus, compared to that of control C57BL/6 mice. Following fear extinction, 129S1 mice exhibited significantly more c-Fos-positive cells in the CEm, PL, and paraventricular nucleus of the thalamus (PVT) than did C57BL/6 mice. These results reveal the dynamic circuitry involved in different steps of fear memory formation and extinction, thus providing candidate brain regions to study the etiology and pathophysiology underlying impaired fear extinction.

13.
Toxicol Res ; 35(2): 201-207, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015902

RESUMEN

Nanoxel-PMTM (Nanoxel) is a docetaxel-loaded methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA). This newly developed and marketed nanoformulation exhibits an improved pharmacokinetic profile, efficacy, and safety. Although the safety of Nanoxel to docetaxel as well as its bioequivalence must be clinically confirmed, all biological activities have not been examined in in vitro or in vivo studies. Here, the toxicity in a cultured cell system and the effects on blood cells were tested with Nanoxel and docetaxel. The in vitro cytotoxicity of Nanoxel was found to be comparable to or slightly lower than that of docetaxel depending on the concentrations tested or the cell types. Neither docetaxel nor Nanoxel induced erythrocytes hemolysis and produced reactive oxygen species up to 100 µM. However, Nanoxel was able to enhance the aggregatory response of platelets to collagen, whereas docetaxel attenuated such aggregation in a range of 50-100 µM, while thrombin-induced aggregation was not affected by either of them. Docetaxel or Nanoxel did not alter basal level of Ca2+ and 5-hydroxytryptamine-evoked Ca2+ transient in vascular smooth muscle cells. These results suggest that the mPEG-PDLLA micellar formulation alters the toxicological properties of docetaxel, and that extra cautions are needed when evaluating the safety of nanomedicine.

14.
Neuropsychopharmacology ; 44(2): 314-323, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899405

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring social communication deficit and repetitive/restricted behaviors as common symptoms. Its prevalence has continuously increased, but, till now, there are no therapeutic approaches to relieve the core symptoms, particularly social deficit. In previous studies, abnormal function of the glutamatergic neural system has been proposed as a critical mediator and therapeutic target of ASD-associated symptoms. Here, we investigated the possible roles of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in autism symptoms using two well-known autistic animal models, Cntnap2 knockout (KO) mice and in utero valproic acid-exposed ICR (VPA) mice. We found that Cntnap2 KO mice displayed decreased glutamate receptor expression and transmission. Contrarily, VPA mice exhibited increased glutamate receptor expression and transmission. Next, we investigated whether AMPAR modulators (positive-allosteric-modulator for Cntnap2 KO mice and antagonist for VPA mice) can improve autistic symptoms by normalizing the aberrant excitatory transmission in the respective animal models. Interestingly, the AMPAR modulation specifically ameliorated social deficits in both animal models. These results indicated that AMPAR-derived excitatory neural transmission changes can affect normal social behavior. To validate this, we injected an AMPAR agonist or antagonist in control ICR mice and, interestingly, these treatments impaired only the social behavior, without affecting the repetitive and hyperactive behaviors. Collectively, these results provide insight into the role of AMPARs in the underlying pathophysiological mechanisms of ASD, and demonstrate that modulation of AMPAR can be a potential target for the treatment of social behavior deficits associated with ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Receptores AMPA/antagonistas & inhibidores , Conducta Social , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Juego e Implementos de Juego , Embarazo , Efectos Tardíos de la Exposición Prenatal , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Valproico
15.
Mol Cells ; 41(5): 486-494, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29696935

RESUMEN

Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphory-lated CaMKIIα were significantly decreased while the expression level of CaMKIIα was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Plasticidad Neuronal , Células Piramidales/fisiología , Transmisión Sináptica , Telomerasa/fisiología , Animales , Trastorno del Espectro Autista/enzimología , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Expresión Génica , Hipocampo/enzimología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacos , Telomerasa/genética , Tetrodotoxina/farmacología
16.
J Neurosci ; 37(25): 6021-6030, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28539417

RESUMEN

The lateral habenula (LHb) is a small part of the epithalamus that projects to monoamine centers in the brain. Previously, neurotransmission onto the LHb was shown to be abnormally potentiated in animal models of depression. However, synaptic plasticity in this brain area and the effect of stressor exposure on synaptic plasticity of the LHb have not been investigated. Thus, we explored whether the LHb undergoes dynamic changes in synaptic efficacy or not. First, we observed that a moderate LTP occurs in a fraction of LHb neurons obtained from naive Sprague Dawley rats. Interestingly, a single exposure to acute stressors, such as inescapable foot shock or restraint plus tail shock (RTS), significantly enhances the magnitude of LTP in the LHb. We also observed an increased number of LHb neurons expressing phosphorylated cAMP response element-binding protein (pCREB) after exposure to stressors, which may contribute to determine the threshold for LTP induction. LTP induction in the LHb resulted in an additional increase in the number of pCREB-expressing neurons in stress-exposed animals but not in naive control animals. Together, we showed that LHb neurons have heterogeneous propensity for synaptic potentiation at rest; however, a single exposure to stressors greatly facilitates LTP induction in the LHb, suggesting that fundamental alterations in synaptic plasticity in the LHb may occur in animal models of depression or post-traumatic stress disorder.SIGNIFICANCE STATEMENT Stress exposure is known to cause depression in human patients and animal models, although explanations at the cellular level remain to be elaborated. Here, we show that the lateral habenula (LHb) exhibits LTP after a pattern of brief strong stimulation. In addition, we show that stress exposure facilitates LTP in the LHb by lowering the threshold for LTP induction. We observed a selective increase in the number of neurons expressing pCREB in the LHb of animal models of depression. LTP induction results in a further increase in the density of pCREB-expressing neurons only after stress exposure. Our study provides the first evidence that animal models of depression exhibit altered synaptic plasticity of the LHb.


Asunto(s)
Habénula/fisiopatología , Potenciación a Largo Plazo , Estrés Psicológico/fisiopatología , Sinapsis , Animales , Ansiedad/fisiopatología , Ansiedad/psicología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electrochoque , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Restricción Física , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/fisiopatología , Estrés Psicológico/psicología
17.
Toxicol Res ; 32(4): 353-358, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27818738

RESUMEN

The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of 25~100 µg/mL, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at 50~100 µg/mL and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at 10~100 µg/mL, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution.

18.
J Ginseng Res ; 40(1): 55-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26843822

RESUMEN

BACKGROUND: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of K(+) channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. METHODS: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. RESULTS: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice. We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. CONCLUSION: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...