Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 8: 628222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537316

RESUMEN

Ca2+ regulates several cellular functions, including signaling events, energy production, and cell survival. These cellular processes are mediated by Ca2+-binding proteins, such as EF-hand superfamily proteins. Among the EF-hand superfamily proteins, allograft inflammatory factor-1 (AIF-1) and swiprosin-1/EF-hand domain-containing protein 2 (EFhd2) are cytosolic actin-binding proteins. AIF-1 modulates the cytoskeleton and increases the migration of immune cells. EFhd2 is also a cytoskeletal protein implicated in immune cell activation and brain cell functions. EFhd1, a mitochondrial fraternal twin of EFhd2, mediates neuronal and pro-/pre-B cell differentiation and mitoflash activation. Although EFhd1 is important for maintaining mitochondrial morphology and energy synthesis, its mechanism of action remains unclear. Here, we report the crystal structure of the EFhd1 core domain comprising a C-terminus of a proline-rich region, two EF-hand domains, and a ligand mimic helix. Structural comparisons of EFhd1, EFhd2, and AIF-1 revealed similarities in their overall structures. In the structure of the EFhd1 core domain, two Zn2+ ions were observed at the interface of the crystal contact, suggesting the possibility of Zn2+-mediated multimerization. In addition, we found that EFhd1 has Ca2+-independent ß-actin-binding and Ca2+-dependent ß-actin-bundling activities. These findings suggest that EFhd1, an actin-binding and -bundling protein in the mitochondria, may contribute to the Ca2+-dependent regulation of mitochondrial morphology and energy synthesis.

2.
Biochem Biophys Res Commun ; 507(1-4): 383-388, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30446220

RESUMEN

The eukaryotic primase/polymerase complex synthesizes approximately 107 primers, one per Okazaki fragment, during the replication of mammalian chromosomes, which contain 109 base pairs. Primase catalyzes the synthesis of a short RNA segment to a single-stranded DNA template. Primase is important in DNA replication because no known replicative DNA polymerases can initiate the synthesis of a DNA strand without an initial RNA primer. The primase subcomplex is composed of a small catalytic subunit (p49), and a large accessory subunit (p58). Priming mechanisms remain poorly understood, although large numbers of structures of archaeal and eukaryotic p49 and/or p58 as well as structures of bacterial enzymes have been determined. In this study, we determined the structure of human p49 at 2.2 Šresolution with citrate in its inactive forms. Dibasic citrate was bound at the nucleotide triphosphate (NTP) ß, γ-phosphate binding site through nine hydrogen bonds. We also measured the dissociation constant of citrate and NTPs. We further demonstrated that the p49 activity is regulated by pH and citrate, which was not previously recognized as a key regulator of DNA replication. We propose that the citrate inhibits the primase and regulates DNA replication at the replication fork.


Asunto(s)
Ácido Cítrico/farmacología , ADN Primasa/antagonistas & inhibidores , ADN Primasa/química , Inhibidores Enzimáticos/farmacología , Aniones , Calorimetría , Dominio Catalítico , Ácido Cítrico/química , Cristalografía por Rayos X , ADN Primasa/metabolismo , Cartilla de ADN/metabolismo , Inhibidores Enzimáticos/química , Humanos , Nucleótidos/metabolismo
3.
Biochem Biophys Res Commun ; 486(2): 470-475, 2017 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-28315686

RESUMEN

Anti-bacterial and anti-viral neuraminidase agents inhibit neuraminidase activity catalyzing the hydrolysis of terminal N-acetylneuraminic acid (Neu5Ac) from glycoconjugates and help to prevent the host pathogenesis that lead to fatal infectious diseases including influenza, bacteremia, sepsis, and cholera. Emerging antibiotic and drug resistances to commonly used anti-neuraminidase agents such as oseltamivir (Tamiflu) and zanamivir (Relenza) have highlighted the need to develop new anti-neuraminidase drugs. We obtained a serendipitous complex crystal of the catalytic domain of Clostridium perfringens neuraminidase (CpNanICD) with 2-(cyclohexylamino)ethanesulfonic acid (CHES) as a buffer. Here, we report the crystal structure of CpNanICD in complex with CHES at 1.24 Å resolution. Amphipathic CHES binds to the catalytic site of CpNanICD similar to the substrate (Neu5Ac) binding site. The 2-aminoethanesulfonic acid moiety and cyclohexyl groups of CHES interact with the cluster of three arginine residues and with the hydrophobic pocket of the CpNanICD catalytic site. In addition, a structural comparison with other bacterial and human neuraminidases suggests that CHES could serve as a scaffold for the development of new anti-neuraminidase agents targeting CpNanI.


Asunto(s)
Proteínas Bacterianas/química , Clostridium perfringens/química , Inhibidores Enzimáticos/química , Neuraminidasa/química , Taurina/análogos & derivados , Secuencias de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Clostridium perfringens/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Neuraminidasa/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Taurina/química
4.
Biochem Biophys Res Commun ; 483(1): 442-448, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28011271

RESUMEN

EF-hand domain-containing protein D2/Swiprosin-1 (EFhd2) is an actin-binding protein mainly expressed in the central nervous and the immune systems of mammals. Intracellular events linked to EFhd2, such as membrane protrusion formation, cell adhesion, and BCR signaling, are triggered by the association of EFhd2 and F-actin. We previously reported that Ca2+ enhances the F-actin-bundling ability of EFhd2 through maintaining a rigid parallel EFhd2-homodimer structure. It was also reported that the F-actin-bundling ability of EFhd2 is regulated by a phosphorylation-dependent mechanism. EGF-induced phosphorylation at Ser183 of EFhd2 has been shown to inhibit F-actin-bundling, leading to irregular actin dynamics at the leading edges of cells. However, the underlying mechanism of this inhibition has remained elusive. Here, we report the crystal structure of a phospho-mimicking mutant (S183E) of the EFhd2 core domain, where the actin-binding sites are located. Although the overall structure of the phospho-mimicking mutant is similar to the one of the unphosphorylated form, we observed a conformational transition from ordered to disordered structure in the linker region at the C-terminus of the mutant. Based on our structural and biochemical analyses, we suggest that phosphorylation at Ser183 of EFhd2 causes changes in the local conformational dynamics and the surface charge distribution of the actin-binding site, resulting in a re-coordination of the actin-binding sites in the dimer structure and a reduction of F-actin-bundling activity without affecting the F-actin-binding capacity.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Actinas/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Multimerización de Proteína , Serina/metabolismo
5.
Sci Rep ; 6: 39095, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974828

RESUMEN

EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína
6.
FEBS Lett ; 590(23): 4402-4413, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27714797

RESUMEN

The interaction of the rhomboid pseudoprotease Derlin-1 and p97 is crucial for the retrotranslocation of polyubiquitinated substrates in the endoplasmic reticulum-associated degradation pathway. We report a 2.25 Å resolution structure of the p97 N-terminal domain (p97N) in complex with the Derlin-1 SHP motif. Remarkably, the SHP motif adopts a short, antiparallel ß-strand that interacts with the ß-sheet of p97N-a site distinct from that to which most p97 adaptor proteins bind. Mutational and biochemical analyses contributed to defining the specific interaction, demonstrating the importance of a highly conserved binding pocket on p97N and a signature motif on SHP. Our findings may also provide insights into the interactions between other SHP-containing proteins and p97N.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Secuencia Conservada , Degradación Asociada con el Retículo Endoplásmico , Humanos , Unión Proteica , Dominios Proteicos
7.
Biochem J ; 473(18): 2863-80, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27407164

RESUMEN

RHBDL4 is an active rhomboid that specifically recognizes and cleaves atypical, positively charged transmembrane endoplasmic reticulum-associated degradation (ERAD) substrates. Interaction of valosin-containing protein (p97/VCP) and RHBDL4 is crucial to retrotranslocate polyubiquitinated substrates for ERAD pathway. Here, we report the first complex structure of VCP-binding motif (VBM) with p97 N-terminal domain (p97N) at 1.88 Šresolution. Consistent with p97 adaptor proteins including p47-ubiquitin regulatory X (UBX), gp78-VCP-interacting motif (VIM), OTU1-UBX-like element, and FAF1-UBX, RHBDL4 VBM also binds at the interface between the two lobes of p97N. Notably, the RF residues in VBM are involved in the interaction with p97N, showing a similar interaction pattern with that of FPR signature motif in the UBX domain, although the directionality is opposite. Comparison of VBM interaction with VIM of gp78, another α-helical motif that interacts with p97N, revealed that the helix direction is inversed. Nevertheless, the conserved arginine residues in both motifs participate in the majority of the interface via extensive hydrogen bonds and ionic interactions with p97N. We identified novel VBM-binding mode to p97N that involves a combination of two types of p97-cofactor specificities observed in the UBX and VIM interactions. This highlights the induced fit model of p97N interdomain cleft upon cofactor binding to form stable p97-cofactor complexes. Our mutational and biochemical analyses in defining the specific interaction between VBM and p97N have elucidated the importance of the highly conserved VBM, applicable to other VBM-containing proteins. We also showed that RHBDL4, ubiquitins, and p97 co-operate for efficient substrate dislocation.


Asunto(s)
Proteínas de la Membrana/química , Secuencia de Aminoácidos , Animales , Humanos , Conformación Proteica , Homología de Secuencia de Aminoácido , Difracción de Rayos X
8.
Sci Rep ; 6: 19681, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26805589

RESUMEN

Quinolinate phosphoribosyltransferase (QPRT) catalyses the production of nicotinic acid mononucleotide, a precursor of de novo biosynthesis of the ubiquitous coenzyme nicotinamide adenine dinucleotide. QPRT is also essential for maintaining the homeostasis of quinolinic acid in the brain, a possible neurotoxin causing various neurodegenerative diseases. Although QPRT has been extensively analysed, the molecular basis of the reaction catalysed by human QPRT remains unclear. Here, we present the crystal structures of hexameric human QPRT in the apo form and its complexes with reactant or product. We found that the interaction between dimeric subunits was dramatically altered during the reaction process by conformational changes of two flexible loops in the active site at the dimer-dimer interface. In addition, the N-terminal short helix α1 was identified as a critical hexamer stabilizer. The structural features, size distribution, heat aggregation and ITC studies of the full-length enzyme and the enzyme lacking helix α1 strongly suggest that human QPRT acts as a hexamer for cooperative reactant binding via three dimeric subunits and maintaining stability. Based on our comparison of human QPRT structures in the apo and complex forms, we propose a drug design strategy targeting malignant glioma.


Asunto(s)
Glioma/tratamiento farmacológico , NAD/biosíntesis , Pentosiltransferasa/química , Catálisis , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Glioma/genética , Humanos , Pentosiltransferasa/metabolismo , Conformación Proteica en Hélice alfa
9.
EMBO Rep ; 16(10): 1318-33, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26341627

RESUMEN

The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Moleculares , Mutación , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
FEBS Lett ; 589(15): 1795-801, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26022398

RESUMEN

Coxsackievirus B3 is the main cause of human viral myocarditis and cardiomyopathy. Virally encoded Coxsackievirus 3C protease (3C(pro)) plays an essential role in viral proliferation. Here, benserazide was discovered as a novel inhibitor from a drug library screen targeting Coxsackievirus 3C(pro) using a FRET-based enzyme assay. Benserazide, whose chemical structure has no electrophilic functional groups, was characterized as a non-competitive inhibitor by enzyme kinetic studies. A molecular docking study with benserazide and its analogs indicated that a novel putative allosteric binding site was involved. Specifically, a 2,3,4-trihydroxybenzyl moiety was determined to be a key pharmacophore for the enzyme's inhibitory activity. We suggest that the putative allosteric binding site may be a novel target for future therapeutic strategies.


Asunto(s)
Benserazida/farmacología , Enterovirus Humano B/enzimología , Inhibidores de Proteasas/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Sitio Alostérico , Cisteína Endopeptidasas/genética , Transferencia Resonante de Energía de Fluorescencia , Simulación del Acoplamiento Molecular , Proteínas Virales/genética
11.
J Synchrotron Radiat ; 20(Pt 6): 984-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24121353

RESUMEN

Proper cell division at the mid-site of gram-negative bacteria reflects critical regulation by the min system (MinC, MinD and MinE) of the cytokinetic Z ring, which is a polymer composed of FtsZ subunits. MinC and MinD act together to inhibit aberrantly positioned Z-ring formation. MinC consists of two domains: an N-terminal domain (MinCNTD), which interacts with FtsZ and inhibits FtsZ polymerization, and a C-terminal domain (MinCCTD), which interacts with MinD and inhibits the bundling of FtsZ filaments. These two domains reportedly function together, and both are essential for normal cell division. The full-length dimeric structure of MinC from Thermotoga maritima has been reported, and shows that MinC dimerization occurs via MinCCTD; MinCNTD is not involved in dimerization. Here the crystal structure of Escherichia coli MinCNTD (EcoMinCNTD) is reported. EcoMinCNTD forms a dimer via domain swapping between the first ß strands in each subunit. It is therefore suggested that the dimerization of full-length EcoMinC occurs via both MinCCTD and MinCNTD, and that the dimerized EcoMinCNTD likely plays an important role in inhibiting aberrant Z-ring localization.


Asunto(s)
Proteínas Bacterianas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Thermotoga maritima/química
12.
PLoS One ; 8(8): e71626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977092

RESUMEN

Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca(2+), and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca(2+) via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Adhesión Celular , Línea Celular , Motivos EF Hand , Humanos , Lisina/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Seudópodos/metabolismo , Eliminación de Secuencia
13.
PLoS One ; 8(4): e62027, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23626766

RESUMEN

We have determined the crystal structure of porcine quinolinate phosphoribosyltransferase (QAPRTase) in complex with nicotinate mononucleotide (NAMN), which is the first crystal structure of a mammalian QAPRTase with its reaction product. The structure was determined from protein obtained from the porcine kidney. Because the full protein sequence of porcine QAPRTase was not available in either protein or nucleotide databases, cDNA was synthesized using reverse transcriptase-polymerase chain reaction to determine the porcine QAPRTase amino acid sequence. The crystal structure revealed that porcine QAPRTases have a hexameric structure that is similar to other eukaryotic QAPRTases, such as the human and yeast enzymes. However, the interaction between NAMN and porcine QAPRTase was different from the interaction found in prokaryotic enzymes, such as those of Helicobacter pylori and Mycobacterium tuberculosis. The crystal structure of porcine QAPRTase in complex with NAMN provides a structural framework for understanding the unique properties of the mammalian QAPRTase active site and designing new antibiotics that are selective for the QAPRTases of pathogenic bacteria, such as H. pylori and M. tuberculosis.


Asunto(s)
Riñón/química , Mononucleótido de Nicotinamida/análogos & derivados , Pentosiltransferasa/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , ADN Complementario/genética , Helicobacter pylori/química , Helicobacter pylori/enzimología , Humanos , Riñón/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Mononucleótido de Nicotinamida/química , Pentosiltransferasa/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Especificidad de la Especie , Homología Estructural de Proteína , Porcinos
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1488-90, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23192029

RESUMEN

Quinolinate phosphoribosyltransferase (QAPRTase) is a key enzyme in NAD biosynthesis; it catalyzes the formation of nicotinate mononucleotide (NAMN) from quinolinate and 5-phosphoribosyl-1-pyrophosphate. In order to elucidate the mechanism of NAMN biosynthesis, crystals of Sus scrofa QAPRTase (Ss-QAPRTase) purified from porcine kidney in complex with NAMN were obtained and diffraction data were collected and processed to 2.1 Šresolution. The Ss-QAPRTase-NAMN cocrystals belonged to space group P321, with unit-cell parameters a=119.1, b=119.1, c=93.7 Å, γ=120.0°. The Matthews coefficient and the solvent content were estimated as 3.10 Å3 Da(-1) and 60.3%, respectively, assuming the presence of two molecules in the asymmetric unit.


Asunto(s)
Riñón/enzimología , Mononucleótido de Nicotinamida/análogos & derivados , Pentosiltransferasa/química , Animales , Cristalografía por Rayos X , Modelos Moleculares , Mononucleótido de Nicotinamida/química , Mononucleótido de Nicotinamida/metabolismo , Pentosiltransferasa/metabolismo , Conformación Proteica , Porcinos/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-21206019

RESUMEN

Quinolinate phosphoribosyltransferase (QPRTase) is a key NAD-biosynthetic enzyme which catalyzes the transfer of quinolinic acid to 5-phosphoribosyl-1-pyrophosphate, yielding nicotinic acid mononucleotide. Homo sapiens QPRTase (Hs-QPRTase) appeared as a hexamer during purification and the protein was crystallized. Diffraction data were collected and processed at 2.8 Šresolution. Native Hs-QPRTase crystals belonged to space group P2(1), with unit-cell parameters a=76.2, b=137.1, c=92.7 Å, ß=103.8°. Assuming the presence of six molecules in the asymmetric unit, the calculated Matthews coefficient is 2.46 Å3 Da(-1), which corresponds to a solvent content of 49.9%.


Asunto(s)
Pentosiltransferasa/química , Estructura Cuaternaria de Proteína , Animales , Cristalización , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , NAD/biosíntesis , Pentosiltransferasa/metabolismo
16.
J Mol Biol ; 397(2): 457-66, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20117114

RESUMEN

betaPIX (p21-activated kinase interacting exchange factor) and Shank/ProSAP protein form a complex acting as a protein scaffold that integrates signaling pathways and regulates postsynaptic structure. Complex formation is mediated by the C-terminal PDZ binding motif of betaPIX and the Shank PDZ domain. The coiled-coil (CC) domain upstream of the PDZ binding motif allows multimerization of betaPIX, which is important for its physiological functions. We have solved the crystal structure of the betaPIX CC-Shank PDZ complex and determined the stoichiometry of complex formation. The betaPIX CC forms a 76-A-long parallel CC trimer. Despite the fact that the betaPIX CC exposes three PDZ binding motifs in the C-termini, the betaPIX trimer associates with a single Shank PDZ. One of the C-terminal ends of the CC forms an extensive beta-sheet interaction with the Shank PDZ, while the other two ends are not involved in ligand binding and form random coils. The two C-terminal ends of betaPIX have significantly lower affinity than the first PDZ binding motif due to the steric hindrance in the C-terminal tails, which results in binding of a single PDZ domain to the betaPIX trimer. The structure shows canonical class I PDZ binding with a beta-sheet interaction extending to position -6 of betaPIX. The betaB-betaC loop of Shank PDZ undergoes a conformational change upon ligand binding to form the beta-sheet interaction and to accommodate the bulky side chain of Trp -5. This structural study provides a clear picture of the molecular recognition of the PDZ ligand and the asymmetric association of betaPIX CC and Shank PDZ.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Ratas , Factores de Intercambio de Guanina Nucleótido Rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...