Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6500, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310231

RESUMEN

Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains.


Asunto(s)
Insulina , Receptor de Insulina , Receptor de Insulina/metabolismo , Microscopía por Crioelectrón , Subunidades de Proteína , Insulina/metabolismo , Dominios Proteicos
2.
Exp Mol Med ; 54(4): 531-541, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478209

RESUMEN

Aptamers are widely used as binders that interact with targets with high affinity or as inhibitors of the function of target molecules. However, they have also been used to modulate target protein function, which they achieve by activating the target or stabilizing its conformation. Here, we report a unique aptamer modulator of the insulin receptor (IR), IR-A62. Alone, IR-A62 acts as a biased agonist that preferentially induces Y1150 monophosphorylation of IR. However, when administered alongside insulin, IR-A62 shows variable binding cooperativity depending on the ligand concentration. At low concentrations, IR-A62 acts as a positive allosteric modulator (PAM) agonist that enhances insulin binding, but at high concentrations, it acts as a negative allosteric modulator (NAM) agonist that competes with insulin for IR. Moreover, the concentration of insulin affects the binding of IR-A62 to IR. Finally, the subcutaneous administration of IR-A62 to diabetic mice reduces blood glucose levels with a longer-lasting effect than insulin administration. These findings imply that aptamers can elicit various responses from receptors beyond those of a simple agonist or inhibitor. We expect further studies of IR-A62 to help reveal the mechanism of IR activation and greatly expand the range of therapeutic applications of aptamers.


Asunto(s)
Diabetes Mellitus Experimental , Receptor de Insulina , Regulación Alostérica , Animales , Insulina/metabolismo , Ligandos , Ratones , Receptor de Insulina/metabolismo
3.
Nucleic Acids Res ; 49(2): 700-712, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33410883

RESUMEN

Aptamers are single-stranded oligonucleotides that bind to a specific target with high affinity, and are widely applied in biomedical diagnostics and drug development. However, the use of aptamers has largely been limited to simple binders or inhibitors that interfere with the function of a target protein. Here, we show that an aptamer can also act as a positive allosteric modulator that enhances the activation of a receptor by stabilizing the binding of a ligand to that receptor. We developed an aptamer, named IR-A43, which binds to the insulin receptor, and confirmed that IR-A43 and insulin bind to the insulin receptor with mutual positive cooperativity. IR-A43 alone is inactive, but, in the presence of insulin, it potentiates autophosphorylation and downstream signaling of the insulin receptor. By using the species-specific activity of IR-A43 at the human insulin receptor, we demonstrate that residue Q272 in the cysteine-rich domain is directly involved in the insulin-enhancing activity of IR-A43. Therefore, we propose that the region containing residue Q272 is a hotspot that can be used to enhance insulin receptor activation. Moreover, our study implies that aptamers are promising reagents for the development of allosteric modulators that discriminate a specific conformation of a target receptor.


Asunto(s)
Antígenos CD/efectos de los fármacos , Aptámeros de Nucleótidos/farmacología , Receptor de Insulina/efectos de los fármacos , Regulación Alostérica , Animales , Antígenos CD/química , Antígenos CD/metabolismo , Células Cultivadas , Cricetinae , Glutamina/química , Humanos , Insulina/metabolismo , Ratones , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Ratas , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Técnica SELEX de Producción de Aptámeros , Estimulación Química
4.
Cell Signal ; 32: 24-35, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28089905

RESUMEN

Lysosomal localization of mammalian target of rapamycin complex 1 (mTORC1) is a critical step for activation of the molecule. Rag GTPases are essential for this translocation. Here, we demonstrate that Nudix-type motif 2 (NUDT2) is a novel positive regulator of mTORC1 activation. Activation of mTORC1 is impaired in NUDT2-silenced cells. Mechanistically, NUDT2 binds to Rag GTPase and controls mTORC1 translocation to the lysosomal membrane. Furthermore, NUDT2-dependent mTORC1 regulation is critical for proliferation of breast cancer cells, as NUDT2-silenced cells arrest in G0/G1 phases. Taken together, these results show that NUDT2 is a novel complex formation enhancing factor regulating mTORC1-Rag GTPase signaling that is crucial for cell growth control.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Aminoácidos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fase G1/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Insulina/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ensayo de Tumor de Célula Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...