Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(29): 19314-19323, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001854

RESUMEN

While the molten salt-catalyzed chemical vapor deposition (CVD) technique is recognized for its effectiveness in producing large-area transition metal chalcogenides, understanding their growth mechanisms involving alkali metals remains a challenge. Here, we investigate the kinetics and mechanism of sodium-catalyzed molybdenum disulfide (MoS2) growth and etching through image analysis conducted using an integrated CVD microscope. Sodium droplets, agglomerated via the thermal decomposition of the sodium cholate dispersant, catalyze the precipitation of supersaturated MoS2 laminates and induce growth despite fragmentation during this process. Triangular MoS2 crystals display a distinct self-exhausting exponential behavior and slow growth of thermodynamically favorable crystallographic faces, exhibiting a sulfur-dominant pressure. The growth and etching processes are facilitated by the scooting of sodium droplets along grain edges, displaying comparable rates. Leveraging these kinetics makes it possible to engineer atypical MoS2 shapes. This combined microscope not only enhances the understanding of growth mechanisms but also contributes to the facile development of next-generation nanomaterials.

2.
ACS Appl Mater Interfaces ; 15(39): 46311-46321, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37690085

RESUMEN

Multistimuli responsive materials are advantageous in that they can enhance the desired response or bypass unwanted reactions. Light is one of the most attractive stimuli since it allows remote spatiotemporal control and multiplexing of properties (e.g., wavelength, intensity, irradiation time, pulsed/continuous wave) for application on multiphotoresponsive materials. However, the operating wavelength for such photoresponsive systems often includes an ultraviolet (UV) range that limits its use in the biomedical field. Herein, we investigate near-infrared (NIR)/visible (Vis) light-responsive nanocomposite films composed of rare earth element (i.e., Yb, Er)-doped NaYF4 nanoparticles (NPs) embedded in azobenzene-incorporated poly(dimethylsiloxane) (AzoPDMS), silk fibroin, and silver nanowire (AgNW) layers. Photobending (PB) of the nanocomposite film is induced by a Vis light of 400-700 nm, while upconversion photoluminescence (UCPL) of embedded NPs is activated by an NIR light of 980 nm. The excitation wavelength of photoluminescence (PL) is shifted to the NIR (λ = 980 nm) range via photon upconversion in rare earth element-doped NPs. Independent operation of PB and UCPL enables both on-demand electrical switching and real-time location monitoring for spatiotemporally controlled electrical pulse stimulation. As a result, the dual-photoresponsive nanocomposite film can be utilized as a remotely controllable electrical stimulator and location indicator via different wavelengths of light.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234506

RESUMEN

Flavin with defined helical self-assembly helps to understand chemical designs for obtaining high-purity semiconducting (s)-single-walled carbon nanotubes (SWNT) in a diameter (dt)-selective manner for high-end applications. In this study, flavins containing 8, 12, 16, and 20 n-alkyl chains were synthesized, and their single/tandem effects on dt-selective s-SWNT dispersibility were investigated at isomolarity. Flavins with n-dodecyl and longer chain lengths (FC12, FC16, and FC20) act as good surfactants for stable SWNT dispersions whereas n-octyl flavin (FC8) exhibits poor dispersibility owing to the lack of SWNT buoyancy. When used with small-dt SWNT, FC8 displays chirality-selective SWNT dispersion. This behavior, along with various flavin helical motifs, prompts the development of criteria for 'side chain length (lS)' required for stable and dt-selective SWNT dispersion, which also explains lS-dependent dt-enrichment behavior. Moreover, SWNT dispersions with flavins with dodecyl and longer lS exhibit increased metallic (m)-SWNT, background absorption-contributing carbonaceous impurities (CIs) and preferential selectivity of s-SWNT with slightly larger dt. The increased CIs that affect the SWNT quantum yield were attributed to a solubility parameter. Furthermore, the effects of flavin lS, sonication bath temperature, centrifugal speed, and surfactant concentration on SWNT purity and s-/m-SWNT ratio were investigated. A tandem FC8/FC12 provides fine-tuning of dt-selective SWNT dispersion, wherein the FC8 ratio governs the tendency towards smaller dt. Kinetic and thermodynamic assemblies of tandem flavins result in different sorting behaviors in which wide dt-tunability was demonstrated using kinetic assembly. This study highlights the importance of appropriate side chain length and other extrinsic parameters to obtain dt-selective or high-purity s-SWNT.

4.
Nanoscale Adv ; 4(17): 3537-3548, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36134357

RESUMEN

Carbonaceous impurities (CIs) affect the optoelectronic properties as well as the ability to use absorption spectroscopy to estimate the metallic content of a single-walled carbon nanotube (SWNT) dispersion. Therefore, a method for the accurate quantification and removal of CIs is required. We have devised methods to characterize and quantify CIs present in SWNT batches and to determine the effects of CIs on the optical and electrical properties of SWNT. Quantitative determination of CIs stems from the finding that chloroform selectively disperses CIs present in SWNT batches. CIs separated by dispersing the as-purchased SWNT batch in chloroform have the morphology of defective and agglomerated few-layered graphenes, whose sizes and locations depend on SWNT batches. Moreover, CIs exhibit a featureless UV-vis-mid-wavelength IR (MWIR) absorption curve and an extinction coefficient comparable to graphenes and show difference with carbon black, which is frequently used as the CI reference. The MWIR region that shows least absorptions caused by the transition of various SWNT types was utilized to assess the significant contribution made by CIs present in a surfactant-assisted SWNT dispersion, showing about 12-19 wt% of CIs in various SWNT dispersions. In addition, the extraction of CIs with chloroform results in a highly purified SWNT batch without any diameter distribution change originating from oxidative damage as compared to the commercially available purified SWNT batch. Finally, we found that increasing the weight of CIs present in a SWNT dispersion strongly lowers the thermal conductivity of a SWNT film when compared with the electrical conductivity. This study provides a way to understand the negative effects that CI has on the optoelectronic properties of SWNTs as well as the beneficial effects of excluding ubiquitous CIs in SWNTs batches.

5.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630927

RESUMEN

Understanding the long-term stability of MoS2 is important for various optoelectronic applications. Herein, we show that the long-term exposure to an oxygen atmosphere for up to a few months results in zigzag (zz)-directional line unzipping of the MoS2 basal plane. In contrast to exposure to dry or humid N2 atmospheres, dry O2 treatment promotes the initial formation of line defects, mainly along the armchair (ac) direction, and humid O2 treatment further promotes ac line unzipping near edges. Further incubation of MoS2 for a few months in an O2 atmosphere results in massive zz-directional line unzipping. The photoluminescence and the strain-doping plot based on two prominent bands in the Raman spectrum show that, in contrast to dry-N2-treated MoS2, the O2-treated MoS2 primarily exhibits hole doping, whereas humid-O2-treated MoS2 mainly exists in a neutral charge state with tension. This study provides a guideline for MoS2 preservation and a further method for generating controlled defects.

6.
ACS Nano ; 14(8): 10655-10665, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32806060

RESUMEN

Although the multiwalled carbon nanotube (MWNT) is a promising material for use in the production of high electrical conductivity (σ) polymer nanocomposites, its tendency to aggregate and distribute randomly in a polymer matrix is a problematic issue. In the current study, we developed a highly conductive and monoclinically aligned MWNT-polyamide 6 (PA) nanocomposite containing interfacing flavin moieties. In this system, the flavin mononucleotide (FMN) initially serves as a noncovalent aqueous surfactant for individualizing MWNTs in the form of FMN-wrapped MWNTs (FMN-MWNT), and then partially decomposed FMN (dFMN) induces crystallization of the PA on the MWNTs. The results of experiments performed using material subjected to partial dissolution of PA matrix show that the nanocomposite PA-dFMN-MWNT, formed by melt extrusion of PA and dFMN-MWNT, contains a three-dimensional monoclinic MWNT network embedded in an equally monoclinic PA matrix. An increase in monoclinic network promoted by an increase in the content of MWNT increases σ of the nanocomposite up to 100 S/m, the highest value reported for a polymer-MWNT nanocomposite. X-ray diffraction along with transmission electron microscopy reveal that the presence of dFMN induces the formation of monoclinic PA on dFMN-MWNT. The high σ of the PA-dFMN-MWNT nanocomposite is also a consequence of a minimization of defect formation of MWNT by noncovalent functionalization. Hierarchical structural ordering, yet individualization of MWNTs, provides a viable strategy to improve the physical property of nanocomposites.

7.
ACS Appl Mater Interfaces ; 11(8): 8400-8411, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30724070

RESUMEN

The development of novel methods to detect mercury is of paramount importance owing to the impact of this metal on human health and the environment. We observed that flavin mononucleotide (FMN) and its helical assembly with a single-walled carbon nanotube (SWNT) selectively bind Hg2+ arising from HgCl2 and MeHgCl. Absorption spectroscopic studies show that FMN preferentially forms a 2:1 rather than a 1:1 complex with Hg2+ at high FMN concentrations. On the basis of the analogy to the thymine-Hg-thymine complex, it is proposed that the 2:1 complex between FMN and Hg2+ comprises a Hg-bridged pair of FMN groups, regardless of the presence of SWNT. Upon addition of as little as a few hundred nanomoles of Hg2+, both FMN and FMN-SWNT exhibit absorption and photoluminescence (PL) changes. Moreover, FMN-SWNT displays simultaneous multiple sigmoidal changes in PL of SWNT tubes having different chiral vectors. Assessment of binding affinities using the Hill equation suggests that 2:1 and 1:1 complexes form between Hg2+ and FMN groups on the FMN-SWNT. Theoretical calculations indicate that optical changes of the FMN-SWNT originate from Hg-mediated conformational changes occurring on the helical array of FMN on the SWNT. High-resolution transmission electron microscopy revealed that the presence of Hg2+ in complexes with the FMN-SWNT enables visualization of helical periodic undulation of FMN groups along SWNT without the need for staining. Circular dichroism (CD) study revealed that FMN-SWNT whose CD signal mainly originates from FMN decreases dichroic bands upon the addition of Hg2+ owing to the formation of a centrosymmetric FMN-Hg-FMN triad on SWNT. The binding mode specificity and multimodal changes observed in response to Hg2+ ions suggest that systems based on FMN-SWNT can serve as in vivo NIR beacons for the detection of various mercury derivatives.


Asunto(s)
Mononucleótido de Flavina/química , Mercurio/química , Nanotubos de Carbono/química , Dicroismo Circular , Teoría Funcional de la Densidad , Cloruro de Mercurio/química , Compuestos de Metilmercurio/química , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Timina/química
8.
J Bone Metab ; 25(2): 107-113, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29900160

RESUMEN

BACKGROUND: The authors had earlier conducted a retrospective cohort study from 2008 to 2011 in Jeju Island, among 945 hip fracture patients above 50 years of age. Of these 945 patients, 344 patients (36.4%) underwent a bone mineral density test and 218 patients (23.1%) received treatment for osteoporosis. The purpose of this study was to determine whether a patient education program could improve osteoporosis management after hip fracture. The data of the previous study was used for comparison. METHODS: From November 1, 2014 to September 30, 2015, 190 patients above 50 years of age who were admitted for hip fractures at six different hospitals, were enrolled in the present study. During the hospitalization period, patients underwent education sessions and were provided brochures. Patients were evaluated for diagnosis and treatment of osteoporosis at six months after discharge and were followed-up for at least a year. RESULTS: Of the 222 patients with hip fractures, 190 patients (37 men, 153 women) were enrolled at six hospitals in 2015. Dual energy X-ray absorptiometry was performed on 115 patients (60.5%) and 92 patients (48.4%) were prescribed medication for osteoporosis at the time of discharge. A total of 43.7% and 40.2% of the patients were found to be compliant with osteoporosis medication at 6 months and 12 months follow-up respectively. CONCLUSIONS: This interventional multicenter study demonstrated that a patient education program in patients with hip fractures can improve compliance to osteoporosis medication up to 12 months of follow-up.

9.
Langmuir ; 33(41): 11000-11009, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28926252

RESUMEN

Symmetry breaking of single-walled carbon nanotubes (SWNTs) has profound effects on their optoelectronic properties that are essential for fundamental study and applications. Here, we show that isomeric SWNTs that exhibit identical photoluminescence (PL) undergo symmetry breaking by flavin mononucleotide (FMN) and exhibit dual PLs and different binding affinities (Ka). Increasing the FMN concentration leads to systematic PL shifts of SWNTs according to structural modality and handedness due to symmetry breaking. Density gradient ultracentrifugation using a FMN-SWNT dispersion displays PL shifts and different densities according to SWNT handedness. Using the optical titration method to determine the PL-based Ka of SWNTs against an achiral surfactant as a titrant, left- and right-handed SWNTs display two-step PL inflection corresponding to respective Ka values with FMN, which leads to the determination of the enantiomeric excess (ee) of the SWNT ensemble that was confirmed by circular dichroism measurement. Decreasing the FMN concentration for the SWNT dispersion leads to enantiomeric selection of SWNTs. The titration-based ee determination of the widely used sodium cholate-based SWNT dispersion was also demonstrated by using FMN as a cosurfactant.

10.
Asian Spine J ; 10(5): 857-868, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27790313

RESUMEN

STUDY DESIGN: Cervical spine radiograms of 460 Jeju islanders. PURPOSE: To investigate the age-matched incidences and severity of the cervical disc degeneration and associated pathologic findings. OVERVIEW OF LITERATURE: Several related studies on the incidences of disc and Luschka's and facet joint degeneration have provided some basic data for clinicians. METHODS: Cervical radiographs of 460 (220 males and 240 females) patients in their fourth to ninth decade were analyzed. Ninety patients in their third decade were excluded because of absence of spondylotic findings. RESULTS: Overall incidence of cervical spondylosis was 47.8% (220 of 460 patients). The percentile incidences of spondylosis in the fourth, fifth, sixth, seventh, eighth and ninth decade was 13.2% (10 of 76 patients), 34.6% (37 of 107 patients), 58.9% (66 of 112 patients), 58.8% (50 of 85 patients), 70.3% (45 of 64 patients) and 75.0% (12 of 16 patients), respectively. The percentile incidences of one, two, three, four and five level spondylosis among 220 spondylosis patients was 45.5% (n=100), 34.1% (n=75), 15.0% (n=33), 4.5% (n=10), and 0.9% (n=2). Severity of disc degeneration ranged from ± to ++++, and was ± in 6.0% (24 segments), + in 49.6% (198 segments), ++ in 35.3% (141 segments), +++ in 9.0% (36 segments) and ++++ in 0.25% (one segment). Spurs and anterior ligament ossicle formed at the spondylotic segments, mostly at C4~6. The rate of posterior corporal spurs formation was very low. Olisthesis and ossification of the posterior longitudinal ligament were rarely combined with spondylosis. Cervical lordotic curve decreased gradually according to the progress of severity of spondylosis. CONCLUSIONS: The incidence of cervical spondylosis and number of spondylotic segments increase, and degeneration gradually becomes more severe with age.

11.
ACS Appl Mater Interfaces ; 8(35): 23270-80, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27538495

RESUMEN

Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s.

12.
J Microbiol Biotechnol ; 23(9): 1187-96, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23751559

RESUMEN

Global warming will have far-reaching effects on our ecosystem. However, its effects on Antarctic soils have been poorly explored. To assess the effects of warming on microbial abundance and community composition, we sampled Antarctic soils from the King George Island in the Antarctic Peninsula and incubated these soils at elevated temperatures of 5°C and 8°C for 14 days. The reduction in total organic carbon and increase in soil respiration were attributed to the increased proliferation of Bacteria, Fungi, and Archaea. Interestingly, bacterial ammonia monooxygenase (amoA) genes were predominant over archaeal amoA, unlike in many other environments reported previously. Phylogenetic analyses of bacterial and archaeal amoA communities via clone libraries revealed that the diversity of amoA genes in Antarctic ammonia-oxidizing prokaryotic communities were temperature-insensitive. Interestingly, our data also showed that the amoA of Antarctic ammonia-oxidizing bacteria (AOB) communities differed from previously described amoA sequences of cultured isolates and clone library sequences, suggesting the presence of novel Antarctic-specific AOB communities. Denitrification-related genes were significantly reduced under warming conditions, whereas the abundance of amoA and nifH increased. Barcoded pyrosequencing of the bacterial 16S rRNA gene revealed that Proteobacteria, Acidobacteria, and Actinobacteria were the major phyla in Antarctic soils and the effect of short-term warming on the bacterial community was not apparent.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Biodiversidad , Oxidorreductasas/genética , Microbiología del Suelo , Regiones Antárticas , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Calor , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...