Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559038

RESUMEN

Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an 'approach food-avoid predator' task, focusing on the responsiveness of dPAG and BLA neurons to a looming robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory defensive functioning.

2.
Sci Rep ; 13(1): 10853, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407809

RESUMEN

Impaired social abilities are characteristics of a variety of psychiatric disorders such as schizophrenia, autism spectrum disorder, and bipolar disorder. Studies consistently implicated the relationship between the anterior insular cortex (aIC) and social ability, however, how the aIC involves in processing specific subtypes of social ability was uninvestigated. We, therefore, investigated whether the absence or presence of the aIC affects the social behaviors of mice. We found that electrolytic lesions of the aIC specifically impaired mice's ability to recognize a novel stranger mouse, while the sociability of the aIC-lesioned mice was intact. Interestingly, the aIC-lesioned mice were still distinguished between a mouse that had been housed together before the aIC lesion and a novel mouse, supporting that retrieval of social recognition memory may not involve the aIC. Additional behavioral tests revealed that this specific social ability impairment induced by the aIC lesion was not due to impairment in olfaction, learning and memory, locomotion, or anxiety levels. Together our data suggest that the aIC is specifically involved in processing social recognition memory, but not necessarily involved in retrieving it.


Asunto(s)
Trastorno del Espectro Autista , Corteza Insular , Ratones , Animales , Trastorno del Espectro Autista/patología , Memoria , Reconocimiento en Psicología , Aprendizaje , Conducta Social , Corteza Cerebral/patología
3.
IEEE Trans Biomed Circuits Syst ; 17(2): 362-374, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37028306

RESUMEN

This study proposes a novel brain-stimulated mouse experiment system which is insensitive to the variations in the position and orientation of a mouse. This is achieved by the proposed novel crown-type dual coil system for magnetically coupled resonant wireless power transfer (MCR-WPT). In the detailed system architecture, the transmitter coil consists of a crown-type outer coil and a solenoid-type inner coil. The crown-type coil was constructed by repeating the rising and falling at an angle of 15 ° for each side which creates the H-field diverse direction. The solenoid-type inner coil creates a magnetic field distributed uniformly along the location. Therefore, despite using two coils for the Tx system, the system generates the H-field insensitive to the variations in the position and angle of the receiver system. The receiver is comprised of the receiving coil, rectifier, divider, LED indicator, and the MMIC that generates the microwave signal for stimulating the brain of the mouse. The system resonating at 2.84 MHz was simplified to easy fabrication by constructing 2 transmitter coils and 1 receiver coil. A peak PTE of 19.6% and a PDL of 1.93 W were achieved, and the system also achieved an operation time ratio of 89.55% in vivo experiments. As a result, it is confirmed that experiments could proceed for approximately 7 times longer through the proposed system compared to the conventional dual coil system.


Asunto(s)
Microondas , Tecnología Inalámbrica , Ratones , Animales , Suministros de Energía Eléctrica
4.
Exp Neurobiol ; 32(6): 387-394, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38196134

RESUMEN

Loss of inhibition is suggested to cause pathological pain symptoms. Indeed, some human case reports suggest that lesions including the thalamic reticular nucleus (TRN) which provides major inhibitory inputs to other thalamic nuclei, may induce thalamic pain, a type of neuropathic pain. In support, recent studies demonstrated that activation of GABAergic neurons in the TRN reduces nociceptive responses in mice, reiterating the importance of the TRN in gating nociception. However, whether biochemically distinct neuronal types in the TRN differentially contribute to gating nociception has not been investigated. We, therefore, investigated whether the activity of parvalbumin (PV) and somatostatin (SOM) expressing neurons in the somatosensory TRN differentially modulate nociceptive behaviors using optogenetics and immunostaining techniques. We found that activation of PV neurons in the somatosensory TRN significantly reduced nociceptive behaviors, while activation of SOM neurons in the TRN had no such effect. Also, selective activation of PV neurons, but not SOM neurons, in the TRN activated relatively more PV neurons in the primary somatosensory cortex, which delivers inhibitory effect in the cortex, when measured with cFos and PV double staining. Results of our study suggest that PV neurons in the somatosensory TRN have a stronger influence in regulating nociception and that their activations may provide further inhibition in the somatosensory cortex by activating cortical PV neurons.

5.
Materials (Basel) ; 15(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36556728

RESUMEN

In this study, we successfully synthesized rare-earth-doped crystalline SrWO4 at room temperature by co-precipitation. The results from the X-ray diffraction analysis showed a main diffraction peak related to the (112) plane. Phosphors doped with either Dy3+ or Sm3+ ions showed strong light absorption in the UV region and blue-yellow and red light emission. To synthesize a white light phosphor, Dy3+ and Sm3+ ions were co-doped to produce a SrWO4:[Sm3+]/[Dy3+] phosphor. When the Sm3+ ion concentration was increased and the Dy3+ concentration was maintained, the red light intensity increased while the blue-yellow light intensity decreased. The composites were combined with polydimethylsiloxane (PDMS), and a flexible composite material was fabricated. The composite exhibited various luminescence properties under UV and visible light, which suggested its potential for use as an LED color filter.

6.
Materials (Basel) ; 15(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431401

RESUMEN

A BaMoO4:[Er3+]/[Yb3+] up-conversion (UC) phosphor was synthesized by co-precipitation and calcination of the precursor at 800 °C. The main peak (112) for the synthesized phosphor was strongly detected in the XRD pattern and had a tetragonal structure. The doping of rare-earth ions affected the crystal lattice by shifting the main peak, decreasing the lattice constant, and shifting the position of the Raman signal. The synthesized upconverted phosphor exhibited strong green signals at 530 and 553 nm and weak red signals at 657 nm when excited at 980 nm. The green light emission intensity of the UC phosphor increased as the pump power of the laser increased due to the two-photon effect. The synthesized upconverted phosphor was prepared as a pellet and flexible composite. Thermal quenching led to a decrease in luminescence intensity as the temperature increased, which means that the phosphor can be applied to optical temperature sensing.

7.
Sci Rep ; 12(1): 6504, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444205

RESUMEN

Anxiety disorders, such as post-traumatic stress disorder (PTSD), are thought to occur by dysfunction in the fear and anxiety-related brain circuit, however, the exact mechanisms remain unknown. Recent human studies have shown that the right anterior insular cortex (aIC) activity is positively correlated with the severity of PTSD symptoms. Understanding the role of the aIC in fear and anxiety may provide insights into the etiology of anxiety disorders. We used a modified shock-probe defensive burying behavioral test, which utilizes the natural propensity of rodents to bury potentially dangerous objects, to test the role of aIC in fear. Mice exposed to restraint stress exhibited burying of the restrainer-resembling object, indicative of defensive behavior. Electrolytic ablation of the aIC significantly diminished this defensive burying behavior, suggesting the involvement of the aIC. Single-unit recording of pyramidal neurons in the aIC showed that a proportion of neurons which increased activity in the presence of a restrainer-resembling object was significantly correlated with the defensive burying behavior. This correlation was only present in mice exposed to restraint stress. These results suggest that altered neuronal representation in the aIC may regulate fear and anxiety after exposure to a traumatic event. Overall, our result demonstrates that the aIC mediates fear and anxiety and that it could be a potential target for treating anxiety disorders.


Asunto(s)
Corteza Insular , Trastornos por Estrés Postraumático , Animales , Ansiedad , Miedo/fisiología , Ratones , Restricción Física
8.
Nanomaterials (Basel) ; 11(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34684960

RESUMEN

In this study, we investigated the effects on the characteristic changes in OLED devices of using self-assembled monolayers with different functional groups as the hole injection layer, resulting in changes in their performance. Thus, we confirmed that it is possible to control the wetting properties, surface roughness, and work function of the indium tin oxide (ITO) surface by introducing self-assembled monolayers (SAMs). The contact angle measurements confirmed that the substrate surface contact angle tended to increase with SAM deposition. In addition, AFM measurements confirmed that the substrate surface roughness tended to decrease when SAM was deposited on the surface. Finally, it was confirmed through the work function measurement results that the work function increased when the ITO surface was modified by SAM. Furthermore, compared to OLEDs using only the ITO anode, the SAM-modified device showed a higher current density (359.68 A/cm2), improved brightness (76.8 cd/cm2), and a smaller turn-on voltage (7 V). This approach provides a simple route for fabricating organic light-emitting diode applications.

9.
Elife ; 102021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533133

RESUMEN

Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Conducta Alimentaria , Hipocampo/fisiología , Células de Lugar/fisiología , Conducta Predatoria , Asunción de Riesgos , Percepción Espacial , Potenciales de Acción , Amígdala del Cerebelo/metabolismo , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Hipocampo/metabolismo , Masculino , Vías Nerviosas/fisiología , Optogenética , Células de Lugar/metabolismo , Ratas Long-Evans , Factores de Tiempo
10.
Neural Netw ; 134: 131-142, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33307279

RESUMEN

Spike sorting refers to the technique of detecting signals generated by single neurons from multi-neuron recordings and is a valuable tool for analyzing the relationships between individual neuronal activity patterns and specific behaviors. Since the precision of spike sorting affects all subsequent analyses, sorting accuracy is critical. Many semi-automatic to fully-automatic spike sorting algorithms have been developed. However, due to unsatisfactory classification accuracy, manual sorting is preferred by investigators despite the intensive time and labor costs. Thus, there still is a strong need for fully automatic spike sorting methods with high accuracy. Various machine learning algorithms have been developed for feature extraction but have yet to show sufficient accuracy for spike sorting. Here we describe a deep learning-based method for extracting features from spike signals using an ensemble of auto-encoders, each with a distinct architecture for distinguishing signals at different levels of resolution. By utilizing ensemble of auto-encoder ensemble, where shallow networks better represent overall signal structure and deep networks better represent signal details, extraction of high-dimensional representative features for improved spike sorting performance is achieved. The model was evaluated on publicly available simulated datasets and single-channel and 4-channel tetrode in vivo datasets. Our model not only classified single-channel spikes with varying degrees of feature similarities and signal to noise levels with higher accuracy, but also more precisely determined the number of source neurons compared to other machine learning methods. The model also demonstrated greater overall accuracy for spike sorting 4-channel tetrode recordings compared to single-channel recordings.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Procesamiento de Señales Asistido por Computador , Potenciales de Acción/fisiología , Bases de Datos Factuales/estadística & datos numéricos , Aprendizaje Automático , Neuronas/fisiología
11.
Exp Neurobiol ; 28(5): 568-577, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31698549

RESUMEN

The thalamus is a brain structure known to modulate sensory information before relaying to the cortex. The unique ability of a thalamocortical (TC) neuron to switch between the high frequency burst firing and single spike tonic firing has been implicated to have a key role in sensory modulation including pain. Of the two firing modes, burst firing, especially maintaining certain burst firing properties, was suggested to be critical in controlling nociceptive behaviors. Therefore, understanding the factors that influence burst firing properties would offer important insight into understanding sensory modulation. Using computational modeling, we investigated how the balance of excitatory and inhibitory inputs into a TC neuron influence TC bursting properties. We found that intensity of inhibitory inputs and the timing of excitatory input delivery control the dynamics of bursting properties. Then, to reflect a more realistic model, excitatory inputs delivered at different dendritic locations-proximal, intermediate, or distal-of a TC neuron were also investigated. Interestingly, excitatory input delivered into a distal dendrite, despite the furthest distance, had the strongest influence in shaping burst firing properties, suggesting that not all inputs equally contribute to modulating TC bursting properties. Overall, the results provide computational insights in understanding the detailed mechanism of the factors influencing temporal pattern of thalamic bursts.

12.
Materials (Basel) ; 12(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909501

RESUMEN

We examined the electro-optical characteristics of organic light emitting diodes according to the N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) thicknesses. The thicknesses of TPD were varied from 5 nm to 50 nm. The current density of the device with a TPD thickness of 5 nm was 8.94 times higher than that with a thickness of 50 nm at a driving voltage of 10 V. According to the conduction⁻current characteristics of conductors, the current densities improved with a decreasing TPD thickness. Different from the current density⁻voltage characteristics, the current efficiency⁻current density characteristics showed an improved efficiency with a 50 nm TPD thickness. The current efficiencies of a device with a 5 nm TPD thickness at a driving voltage of 10 V was 0.148 and at a 50 nm TPD thickness 0.993 cd/A, which was 6.7 times higher than the 5 nm TPD thickness. These results indicated that hole transport in Organic Light-Emitting Diode (OLED) devices were more efficient with thin 5 nm TPD than with thick 50 nm TPD, while electron transport was more efficient with thick 50 nm TPD, which caused conflicting results in the current efficiency-current density and current density-voltage characteristics according to TPD thicknesses.

13.
J Nanosci Nanotechnol ; 18(9): 6010-6013, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677734

RESUMEN

In this study, we investigated the photoelectric effect and optimization of an organic light-emitting diode (OLED) depending on the presence or absence of a fluorinated self-assembled monolayer (FLSAM) and by varying the thickness of N,N'-Di (1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (α-NPD) from 0 nm to 50 nm. The large distinction in electronegativity between the carbon and the fluorine replacing hydrogen in the alkyl chain of FLSAM generates a strong dipole moment to elevate the vacuum level, resulting in a change of the work function. This eliminates the injection barrier between the work function of the ITO modified by FLSAM and the highest occupied molecular orbital (HOMO) level of the hole-transport layer, thus leading to excellent driving voltage characteristics. Devices without FLSAM had a driving voltage more than twice that of devices using with FLSAM. The introduction of α-NPD as the hole-transport layer enhanced the electrical conductivity by facilitating the transport of holes. However, due to the inherent insulating film properties of α-NPD, the increase in its thickness resulted in a decrease in current density.

14.
Micromachines (Basel) ; 9(11)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30715054

RESUMEN

The form of the collection of bio-signals is becoming increasingly integrated and smart to meet the demands of the age of smart healthcare and the Fourth Industrial Revolution. In addition, the movement patterns of human muscles are also becoming more complex due to diversification of the human living environment. An analysis of the movement patterns of normal people's muscles contracting with age and that of patients who are being treated in a hospital, including the disabled, will help improve life patterns, medical treatment patterns, and quality of life. In this study, the researchers developed a smart electromyogram (EMG) sensor which can improve human life patterns through EMG range and pattern recognition, which is beyond the conventional simple EMG measurement level. The developed sensor has a high gain of 10,000 times or more, noise of 500 uVrms or less, and common mode rejection ratio (CMRR) of 100 dB or more for EMG level and pattern recognition. The pattern recognition time of the sensor is 30 s. All the circuits developed in this study have a phase margin of 75 degrees or more for stability. Standard 0.25 µm complementary metal oxide semiconductor (CMOS) technology was used for the integrated circuit design. The system error rate was confirmed to be 1% or less through a clinical trial conducted on five males in their 40s and three females in their 30s for the past two years. The muscle activities of all subjects of the clinical trial were improved by about 21% by changing their life patterns based on EMG pattern recognition.

15.
Luminescence ; 30(4): 416-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25131636

RESUMEN

The electrical conductivity behavior of a fluorinated self-assembled monolayer (FSAM) of a molybdenum oxide (MoOx)-doped α-naphthyl diamine derivative (α-NPD) in organic light-emitting diodes (OLEDs) was investigated. The current density of the MoOx-doped α-NPD/FSAM device was proportional to its voltage owing to smooth carrier injection through the FSAM and the high carrier density of its bulk. The temperature-dependent characteristics of this device were investigated. The current density-voltage characteristics at different temperatures were almost the same owing to its very low activation energy. The activation energy of the device was estimated to be 1.056 × 10(-2) [eV] and was very low due to the inelastic electron tunneling of FSAM molecules.


Asunto(s)
Iluminación/instrumentación , Molibdeno/química , Conductividad Eléctrica , Diseño de Equipo , Óxidos/química , Temperatura
16.
Neurosci Lett ; 523(1): 9-14, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22698581

RESUMEN

Accurate spike timing of hippocampal CA1 pyramidal neurons relative to the on-going theta-frequency network oscillations is important in hippocampal spatial information and memory processing. Accumulating evidence suggests that inhibitory interneurons are important in regulating the activity of pyramidal neurons in the local hippocampal circuit. Interneurons synapse mostly onto the dendrites of CA1 pyramidal neurons where they are believed to take part in dendritic computation. However, it remains unclear how the diverse types of interneurons targeting different dendritic domains of pyramidal neurons differentially contribute to the precise control of spike timing during network oscillation. Here, using a full-morphology multi-compartment model of CA1 pyramidal neuron, we find that phasic inhibitory inputs during theta oscillation can precisely control spike timing of CA1 pyramidal neurons by not only delaying but also advancing the spike times. In addition, we report that the biophysical mechanism underlying the spike time advancement caused by inhibitory input is due to the hyperpolarization-activated mixed cation current (I(h)) in pyramidal neuron dendrites. Thus, a wide variety of interneuron types targeting different dendritic locations of pyramidal neuron activate dendritic I(h) to influence spike timing of pyramidal neuron during theta oscillation. This suggests an important functional role of dendritic-targeting interneurons in hippocampal spike timing-based information processing.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/fisiología , Interneuronas/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Cationes , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA