Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003648

RESUMEN

Wharton's jelly-derived mesenchymal stem cell (WJ-MSC)-derived exosomes contain a diverse cargo and exhibit remarkable biological activity, rendering them suitable for regenerative and immune-modulating functions. However, the quantity of secretion is insufficient. A large body of prior work has investigated the use of various growth factors to enhance MSC-derived exosome production. In this study, we evaluated the utilization of thermostable basic fibroblast growth factor (TS-bFGF) with MSC culture and exosome production. MSCs cultured with TS-bFGF displayed superior proliferation, as evidenced by cell cycle analysis, compared with wild-type bFGF (WT-bFGF). Stemness was assessed through mRNA expression level and colony-forming unit (CFU) assays. Furthermore, nanoparticle tracking analysis (NTA) measurements revealed that MSCs cultured with TS-bFGF produced a greater quantity of exosomes, particularly under three-dimensional culture conditions. These produced exosomes demonstrated substantial anti-inflammatory and wound-healing effects, as confirmed by nitric oxide (NO) assays and scratch assays. Taken together, we demonstrate that utilization of TS-bFGF for WJ-MSC-derived exosome production not only increases exosome yield but also enhances the potential for various applications in inflammation regulation and wound healing.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Gelatina de Wharton , Humanos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas , Diferenciación Celular , Proliferación Celular/fisiología , Células Cultivadas
2.
Biology (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372172

RESUMEN

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can differentiate into various tissues and are an essential source of various disease models and therapeutics. Various growth factors are required in order to culture pluripotent stem cells, among which basic fibroblast growth factor (bFGF) is essential for maintaining stem cell ability. However, bFGF has a short half-life (8 h) under normal mammalian cell culture conditions, and its activity decreases after 72 h, posing a serious problem in the production of high-quality stem cells. Here, we evaluated the various functions of pluripotent stem cells (PSCs) by utilizing an engineered thermostable bFGF (TS-bFGF) that is thermally stable and maintains activity longer under mammalian culture conditions. PSCs cultured with TS-bFGF showed better proliferation, stemness, morphology, and differentiation than cells cultured with wild-type bFGF. In light of the importance of stem cells in a wide range of applications in the medical and biotechnology fields, we anticipate that TS-bFGF, as a thermostable and long-acting bFGF, can play a key role in securing high-quality stem cells through various sets of stem cell culture processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA