Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(5): 1855-1870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481815

RESUMEN

Hepatic fibrosis exacerbates mortality and complications in progressive metabolic dysfunction-associated steatohepatitis (MASH). The role of the adenosine 2A receptor (A2aAR) in hepatic fibrosis within the context of MASH remains uncertain. This study aims to elucidate the involvement of the A2aAR signaling pathway and the efficacy of a novel potent A2aAR antagonist in treating hepatic fibrosis in MASH-induced mice fed a chlorine-deficient, L-amino acid-defined, high fat diet (CDAHFD). A2aAR overexpression in LX-2 cells increased fibrosis markers, whereas the known A2aAR antagonist, ZM241385, decreased these markers. A novel A2aAR antagonist, RAD11, not only attenuated fibrosis progression but also exhibited greater inhibition of the A2aAR signaling pathway compared to ZM241385 in mice with MASH, activated primary hepatocytes, and LX-2 cells. RAD11 exhibited a dual antifibrotic mechanism by targeting both activated HSCs and hepatocytes. Its superior antifibrotic efficacy over ZM241385 in the MASH condition stems from its ability to suppress A2aAR-mediated signaling, inhibit HSC activation, reduce hepatic lipogenesis in hepatocytes, and mitigate lipid accumulation-induced oxidative stress-mediated liver damage. This study has shed light on the relationship between A2aAR signaling and hepatic fibrosis, presenting RAD11 as a potent therapeutic agent for managing MASH and hepatic fibrosis.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Ratones Endogámicos C57BL
2.
ACS Nano ; 18(6): 4704-4716, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38288705

RESUMEN

Liver fibrosis is a life-threatening and irreversible disease. The fibrosis process is largely driven by hepatic stellate cells (HSCs), which undergo transdifferentiation from an inactivated state to an activated one during persistent liver damage. This activated state is responsible for collagen deposition in liver tissue and is accompanied by increased CD44 expression on the surfaces of HSCs and amplified intracellular oxidative stress, which contributes to the fibrosis process. To address this problem, we have developed a strategy that combines CD44-targeting of activated HSCs with an antioxidative approach. We developed hyaluronic acid-bilirubin nanoparticles (HABNs), composed of endogenous bilirubin, an antioxidant and anti-inflammatory bile acid, and hyaluronic acid, an endogenous CD44-targeting glycosaminoglycan biopolymer. Our findings demonstrate that intravenously administered HABNs effectively targeted the liver, particularly activated HSCs, in fibrotic mice with choline-deficient l-amino acid-defined high-fat diet (CD-HFD)-induced nonalcoholic steatohepatitis (NASH). HABNs were able to inhibit HSC activation and proliferation and collagen production. Furthermore, in a murine CD-HFD-induced NASH fibrosis model, intravenously administered HABNs showed potent fibrotic modulation activity. Our study suggests that HABNs have the potential to serve as a targeted anti-hepatic-fibrosis therapy by modulating activated HSCs via CD44-targeting and antioxidant strategies. This strategy could also be applied to various ROS-related diseases in which CD44-overexpressing cells play a pivotal role.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácido Hialurónico/farmacología , Bilirrubina/farmacología , Células Estrelladas Hepáticas/metabolismo , Nanomedicina , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Fibrosis , Colágeno/metabolismo , Ratones Endogámicos C57BL
3.
Bioorg Med Chem ; 91: 117403, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418826

RESUMEN

Topoisomerases are key molecular enzymes responsible for altering DNA topology, thus they have long been considered as attractive targets for novel chemotherapeutic agents. Topoisomerase type II (Topo II) catalytic inhibitors embrace a fresh perspective meant to get beyond drawbacks caused by topo II poisons, such as cardiotoxicity and secondary malignancies. Based on previously reported 5H-indeno[1,2-b]pyridines, here we presented new twenty-three hybrid di-indenopyridines along with their topo I/IIα inhibitory and antiproliferative activity. Most of the prepared 11-phenyl-diindenopyridines showed negligible topo I inhibitory activity, showing selectivity over topo II. Among the series, we finally selected compound 17, which displayed 100 % topo IIα inhibition at 20 µM concentration and comparable antiproliferative activity against the tested cell lines. Through competitive EtBr displacement assay, cleavable complex assay, and comet assay, compound 17 was finally determined as a non-intercalative catalytic topo IIα inhibitor. The findings in this study highlight the significance of phenolic, halophenyl, thienyl, and furyl groups at the 4-position of the indane ring in the design and synthesis of di-indenopyridines as potent catalytic topo IIα inhibitors with remarkable anticancer effects.


Asunto(s)
Antineoplásicos , Línea Celular Tumoral , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular
4.
Eur J Med Chem ; 246: 114999, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493620

RESUMEN

Prostate cancer patients primarily receive androgen receptor (AR)-targeted drugs as a primary treatment option because prostate cancer is associated with highly activated AR signaling. AR amplification made prostate cancer cells viable under treatment of AR-targeted therapy, leading to castration resistance. AR amplification was more common in enzalutamide-resistant patients. As a strategy to overcome castration resistance and to improve the efficacy of enzalutamide, second-generation nonsteroidal antiandrogen drugs for castration-resistant prostate cancer (CRPC) including topoisomerase II (topo II) poisons such as etoposide and mitoxantrone, have been administered in combination with enzalutamide. In the present study, it was confirmed that amplification of topo IIα, but not I and IIß, was directly and proportionally associated with poor clinical outcome of Prostate cancer. Among a novel series of newly designed and synthesized 7-(3-aminopropyloxy)-substituted flavone analogues, compound 6, the most potent derivative, was further characterized and identified as a topo IIα catalytic inhibitor that intercalates into DNA and binds to the DNA minor groove with better efficacy and less genotoxicity than etoposide, a topo II poison. Compound 6 showed remarkable efficacy in inhibiting AR-negative CRPC cell growth and sensitizing activity to enzalutamide in AR-positive CRPC cells, thus confirming the potential of topo IIα catalytic inhibitor to overcome resistance to androgen deprivation therapy.


Asunto(s)
Flavonas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antagonistas de Andrógenos , Etopósido/uso terapéutico , Resistencia a Antineoplásicos , Receptores Androgénicos/metabolismo , Nitrilos/farmacología , ADN-Topoisomerasas de Tipo II , Flavonas/uso terapéutico
5.
J Adv Res ; 47: 173-187, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35963541

RESUMEN

INTRODUCTION: HER2 overexpression induces cancer aggression and frequent recurrences in many solid tumors. Because HER2 overproduction is generally followed by gene amplification, inhibition of protein-protein interaction (PPI) between transcriptional factor ELF3 and its coactivator MED23 has been considered an effective but challenging strategy. OBJECTIVES: This study aimed to determine the hotspot of ELF3-MED23 PPI and further specify the essential residues and their key interactions in the hotspot which are controllable by small molecules with significant anticancer activity. METHODS: Intensive biological evaluation methods including SEAP, fluorescence polarization, LC-MS/MS-based quantitative, biosensor, GST-pull down assays, and in silico structural analysis were performed to determine hotspot of ELF3-MED23 PPI and to elicit YK1, a novel small molecule PPI inhibitor. The effects of YK1 on possible PPIs of MED23 and the efficacy of trastuzumab were assessed using cell culture and tumor xenograft mouse models. RESULTS: ELF3-MED23 PPI was found to be specifically dependent on H-bondings between D400, H449 of MED23 and W138, I140 of ELF3 for upregulating HER2 gene transcription. Employing YK1, we confirmed that interruption on these H-bondings significantly attenuated the HER2-mediated oncogenic signaling cascades and exhibited significant in vitro and in vivo anticancer activity against HER2-overexpressing breast and gastric cancers even in their trastuzumab refractory clones. CONCLUSION: Our approach to develop specific ELF3-MED23 PPI inhibitor without interfering other PPIs of MED23 can finally lead to successful development of a drug resistance-free compound to interrogate HER2 biology in diverse conditions of cancers overexpressing HER2.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Cromatografía Liquida , Enlace de Hidrógeno , Espectrometría de Masas en Tándem , Trastuzumab/farmacología , Proteínas de Unión al ADN/genética , Factores de Transcripción , Proteínas Proto-Oncogénicas c-ets , Complejo Mediador
6.
J Med Chem ; 65(14): 9974-10000, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35797110

RESUMEN

A series of fexaramine analogs were synthesized and evaluated to develop an intestine-selective/specific FXR partial agonist. Introduction of both a CN substituent at the C-2 in the biphenyl ring and a fluorine at the C-5 in the aniline ring in fexaramine markedly increased FXR agonistic activity. 27c showed 53 ± 3% maximum efficacy relative to GW4064 in an FXR agonist assay. A substantial amount of 27c was absorbed in the intestine after oral administration in rats, and then it was rapidly metabolized to inactive carboxylic acid 44 by serum esterases. In CDAHFD-fed mice, oral administration of 27c strongly induced multiple intestinal FXR target genes, FGF15, SHP, IBABP, and OST-α, but failed to activate SHP in the liver. 27c significantly reduced the liver fibrogenesis area, hepatic fibrosis markers, and serum level of AST. Rational optimization of fexaramine has led to the identification of an intestine-specific FXR partial agonist 27c.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Acrilatos , Animales , Ácidos y Sales Biliares/metabolismo , Ésteres , Intestinos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo
8.
Chemistry ; 28(22): e202200839, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35344240

RESUMEN

Invited for the cover of this issue are Prof. Takashi Morii and co-workers at Kyoto University and Ewha Womans University. The cover image depicts the graphical design and atomic force microscopic (AFM) images of the synthesized topologically-interlocked DNA catenane and rotaxanes inside a frame-shaped DNA origami. Read the full text of the article at 10.1002/chem.202200108.


Asunto(s)
ADN , Rotaxanos , Humanos , Microscopía de Fuerza Atómica
9.
Chemistry ; 28(22): e202200108, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35218108

RESUMEN

DNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami. These minicircles are 183 bp in length, constitute six individual single-stranded DNAs that are ligated to realize duplex interlocking, and adopt temporary base pairing of single strands for interlocking. To probe the DNA-protein interactions, restriction reactions were carried out on DNAs with different topologies such as free linear duplex or duplex constrained inside origami and free or topologically-interlocked minicircles. Except the free linear duplex, all tested structures were resistant to restriction digestion, indicating that the topological features of DNA, such as flexibility, curvature, and groove orientation, play a major role in DNA-protein interactions.


Asunto(s)
Replicación del ADN , ADN Circular , ADN , ADN de Cinetoplasto
10.
J Microbiol ; 60(1): 63-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34964943

RESUMEN

In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.


Asunto(s)
Carboxiliasas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Expresión Génica , Nitrógeno/metabolismo , Rhodophyta/enzimología , Carboxiliasas/metabolismo , Clonación Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodophyta/genética
11.
Eur J Med Chem ; 227: 113916, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678573

RESUMEN

Based on previous reports on the significance of halogen moieties and the indenopyridin-5-one skeleton, we designed and synthesized a novel series of halogen (F-, Cl-, Br-, CF3- and OCF3-)-containing 2,4-diphenyl indenopyridin-5-ones and their corresponding -5-ols. Unlike indenopyridin-5-ols, most of the prepared indenopyridin-5-ones with Cl-, Br-, and CF3- groups at the 2-phenyl ring conferred a strong dual topoisomerase I/IIα inhibitory effect. Among the series, para-bromophenyl substituted compound 9 exhibited the most potent topoisomerase inhibition and antiproliferative effects, which showed dependency upon the topoisomerase gene expression level of diverse cancer cells. In particular, as a DNA minor groove-binding non-intercalative topoisomerase I/IIα catalytic inhibitor, compound 9 synergistically promoted the anticancer efficacy of clinically applied topoisomerase I/IIα poisons both in vitro and in vivo, having the great advantage of alleviating poison-related toxicities.


Asunto(s)
Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Halógenos/farmacología , Indenos/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Piridonas/farmacología , Inhibidores de Topoisomerasa/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Halógenos/química , Humanos , Indenos/síntesis química , Indenos/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Piridonas/síntesis química , Piridonas/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa/síntesis química , Inhibidores de Topoisomerasa/química , Células Tumorales Cultivadas
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681904

RESUMEN

Castration-resistant prostate cancer (CRPC) is a clinical challenge in treatment because of its aggressive nature and resistance to androgen deprivation therapy. Topoisomerase II catalytic inhibitors have been suggested as a strategy to overcome these issues. We previously reported AK-I-190 as a novel topoisomerase II inhibitor. In this study, the mechanism of AK-I-190 was clarified using various types of spectroscopic and biological evaluations. AK-I-190 showed potent topoisomerase II inhibitory activity through intercalating into DNA without stabilizing the DNA-enzyme cleavage complex, resulting in significantly less DNA toxicity than etoposide, a clinically used topoisomerase II poison. AK-I-190 induced G1 arrest and effectively inhibited cell proliferation and colony formation in combination with paclitaxel in an androgen receptor-negative CRPC cell line. Our results confirmed that topoisomerase II catalytic inhibition inhibited proliferation and induced apoptosis of AR-independently growing prostate cancer cells. These findings indicate the clinical relevance of topoisomerase II catalytic inhibitors in androgen receptor-negative prostate cancer.


Asunto(s)
Andrógenos/deficiencia , Apoptosis , Proliferación Celular , ADN-Topoisomerasas de Tipo II/química , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Ciclo Celular , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/patología , Células Tumorales Cultivadas
13.
Eur J Med Chem ; 226: 113860, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34597897

RESUMEN

Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.


Asunto(s)
Aminas/farmacología , Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Descubrimiento de Drogas , Inhibidores de Topoisomerasa II/farmacología , Aminas/síntesis química , Aminas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Células Tumorales Cultivadas
14.
Vaccine ; 39(42): 6213-6220, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34556363

RESUMEN

Since June 2020, the Y280 lineage H9N2 virus, which is distinct from the previously endemic Y439 lineage, has been circulating in poultry in Korea. In this study, we developed two whole inactivated vaccines, rgHS314 and vac564, against the Y280 and Y439 lineages, respectively, and evaluated their immunogenicity and protective efficacy against homologous or heterologous viral challenge in mice. Serum neutralizing antibody titers in the rgHS314-vaccinated group were higher (68 ± 8.4 10log2) than in the vac564-vaccinated group (18 ± 8.4 10log2). In homologous challenge, rgHS314 conferred 100% protection, with no severe clinical signs, no body weight loss, and no viral replication in any tissues tested except the nasal turbinate. Viral replication in the lungs at 1, 3, 5, and 7 days post-infection (dpi) was significantly lower than in the sham group (p < 0.01). By contrast, all mice in the sham group were dead by 8 dpi with severe clinical signs and weight loss. Likewise, vac564 conferred 100% protection with no weight loss and with significantly lower viral replication in the lung than in the sham group at 3 dpi (p < 0.01). However, both vaccines showed partial protection in heterologous challenge. Our results suggest that both the rgHS314 and vac564 vaccines could be candidate vaccines for further evaluation in humans.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Animales , Anticuerpos Antivirales , Ratones , República de Corea , Vacunas de Productos Inactivados
15.
Vaccine ; 39(42): 6201-6205, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34535319

RESUMEN

Since June 2020, a new H9N2 virus of the Y280 lineage has been epidemic in Korea. Initially, a Korean commercial vaccine against the Y280 and Y439 lineages of H9N2 was evaluated for use in SPF chickens. A single vaccination did not protect chickens against virus of the Y280 lineage, with no significant reduction in virus shedding and a 37.5% inhibition in virus recovery rate in cecal tonsil. rgHS314 was selected as a vaccine candidate, showing immunogenicity in SPF chickens, and was highly productive in eggs. Moreover, rgHS314 protected with high levels of protective immunity and significantly reduced virus shedding, with 100% and 83.3% inhibition of virus recovery in the cecal tonsil against homologous and heterologous challenge viruses, respectively. Taken together, these data suggest that a single vaccination with this recombinant vaccine candidate could elicit cross-reactive immune responses capable of protecting chickens against H9N2 viruses of the Y439 and Y280 lineages.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Animales , Pollos , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/prevención & control , Vacunas Sintéticas/genética
16.
Metabolites ; 11(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34357337

RESUMEN

Metabolites reflect the biochemical dynamics for the maintenance of pregnancy and parturition. UPLC-Q/TOF-MS and LC-MS/MS metabolomics were performed to identify and validate the plasma metabolomic signatures of preterm birth (PTB). We recruited pregnant women between 16 and 40 weeks 5 days gestational age at Ewha Womans Mokdong Hospital for a nested case-control study. In untargeted UPLC-Q/TOF-MS, score plots of partial least-squares discriminant analysis clearly separated the PTB group from the term birth (TB, n = 10; PTB, n = 11). Fifteen metabolites were significantly different between the two groups, as indicated by a variable importance in projection >1 and p < 0.05. Metabolic pathways involving retinol, linoleic acid, D-arginine, and D-ornithine were associated with PTB. Verification by LC-MS/MS focused on retinol metabolism (TB, n = 39; PTB, n = 20). Retinol levels were significantly reduced in PTB compared to TB, while retinal palmitate, all-trans-retinal, and 13-cis-retinoic acid (13cis-RA) significantly increased (p < 0.05). Retinol-binding protein levels were also elevated in PTB. Additionally, all-trans-retinal (AUC 0.808, 95% CI: 0.683-0.933) and 13cis-RA (AUC 0.826, 95% CI: 0.723-0.930) showed improved predictions for PTB-related retinol metabolites. This study suggests that retinoid metabolism improves the accuracy of PTB predictions and plays an important role in maintaining pregnancy and inducing early parturition.

17.
Sci Rep ; 11(1): 13786, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215796

RESUMEN

Virus-like particles (VLPs) are recognized as an alternative vaccine platform that provide effective protection against various highly pathogenic avian influenza viruses (HPAIVs). Here, we developed multi-clade VLPs expressing two HAs (a chimera of clade 2.3.2.1c and clade 2.3.4.4c HA) within a single vector. We then compared its protective efficacy with that of a monovalent VLP and evaluated its potency against each homologous strain. Chickens vaccinated with the multi-clade VLP shed less virus and were better protected against challenge than birds receiving monovalent vaccines. Single vaccination with a multi-clade VLP resulted in 100% survival, with no clinical symptoms and high levels of pre-challenge protective immunity (7.6-8.5 log2). Moreover, the multi-clade VLP showed high productivity (128-256 HAU) both in the laboratory and on a large scale, making it cheaper than whole inactivated vaccines produced in eggs. However, the PD50 (protective dose 50%) of the multi-clade VLP against clades 2.3.2.1c and 2.3.4.4c was < 50 PD50 (28 and 42 PD50, respectively), and effective antibody response was maintained for 2-3 months. This multi-clade VLP protects against both clades of HPAI viruses and can be produced in high amounts at low cost. Thus, the vaccine has potential as a pandemic preparedness vaccine.


Asunto(s)
Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/farmacología , Gripe Aviar/tratamiento farmacológico , Vacunas de Partículas Similares a Virus/farmacología , Animales , Pollos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/patología , Gripe Aviar/virología , Vacunas de Productos Inactivados/farmacología
18.
Mar Environ Res ; 154: 104847, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056702

RESUMEN

The Western Antarctic Peninsula (WAP) has experienced rapid atmospheric and ocean warming over the past few decades and many marine-terminating glaciers have considerably retreated. Glacial retreat is accompanied by fresh meltwater intrusion, which may result in the freshening and acidification of coastal waters. Marian Cove (MC), on King George Island in the WAP, undergoes one of the highest rates of glacial retreat. Intertidal and shallow subtidal waters are likely more susceptible to these processes, and sensitive biological responses are expected from the organisms inhabiting this area. The gammarid amphipod Gondogeneia antarctica is one of the most abundant species in the shallow, nearshore Antarctic waters, and it occupies an essential ecological niche in the coastal marine WAP ecosystem. In this study, we tested the sensitivity of G. antarctica to lowered salinity and pH by meltwater intrusion following glacial retreat. We exposed G. antarctica to four different treatments combining two salinities (34 and 27 psu) and pH (8.0 and 7.6) levels for 26 days. Mortality, excluding cannibalized individuals, increased under low pH but decreased under low salinity conditions. Meanwhile, low salinity increased cannibalism, whereas low pH reduced food detection. Shelter use during the daytime decreased under each low salinity and pH condition, indicating that the two stressors act as disruptors of amphipod behavior. Under low salinity conditions, swimming increased during the daytime but decreased at night. Although interactions between low salinity and low pH were not observed during the experiment, the results suggest that each stressor, likely induced by glacial melting, causes altered behaviors in amphipods. These environmental factors may threaten population persistence in Marian Cove and possibly other similar glacial embayments.


Asunto(s)
Anfípodos , Conducta Animal , Ecosistema , Salinidad , Anfípodos/fisiología , Animales , Regiones Antárticas , Conducta Animal/fisiología , Concentración de Iones de Hidrógeno , Océanos y Mares
19.
J Microbiol ; 58(2): 131-141, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31872373

RESUMEN

Response regulator (RR) is known a protein that mediates cell's response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.


Asunto(s)
Extremófilos/genética , Regulación Bacteriana de la Expresión Génica , Estrés Oxidativo/genética , Estrés Fisiológico/genética , Regiones Antárticas , Bacillus/genética , Bacillus/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Biología Computacional , Escherichia coli/genética , Escherichia coli/fisiología , Extremófilos/metabolismo , Genoma Bacteriano , Estrés Oxidativo/fisiología , Estrés Fisiológico/fisiología , Transformación Bacteriana
20.
Chem Commun (Camb) ; 55(85): 12857-12860, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31598611

RESUMEN

5-Hydroxy-2-phenyl-7-(thiiran-2-ylmethoxy)-4H-chromen-4-one (compound 52) was found as a DNA non-intercalative topo II specific catalytic inhibitor by targeting its ATP-binding domain. Showing changes in interaction with Mg2+, it exhibited highly selective properties against the α-isoform with less toxicity, unlike other topo II poisons, such as etoposide.


Asunto(s)
Adenosina Trifosfato/química , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN/química , Inhibidores de Topoisomerasa II/química , Adenosina Trifosfato/metabolismo , Biocatálisis , ADN/química , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Etopósido/química , Humanos , Dominios Proteicos , Isoformas de Proteínas , Inhibidores de Topoisomerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA