Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405472, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132967

RESUMEN

The ongoing global threats posed by COVID-19 pandemic, catalyzed by SARS-CoV-2, underscores the pressing need for effective antiviral strategies. The viral non-structural protein 1 (Nsp1) significantly influences pathogenicity by impeding host protein expression and enhancing viral RNA translation through its interaction with the stem-loop 1 (SL1) in the 5' untranslated region (UTR). We have developed a novel dual-luciferase reporter assay, designed to investigate the critical Nsp1-SL1 interaction, and identified P23E02 as a potential inhibitor. Our investigation, combining molecular docking studies and alanine mutagenesis, has unveiled that P23E02 disrupts Nsp1-40S ribosomal subunit interaction, liberating translational inhibition and empowering host antiviral responses. P23E02 exhibits antiviral efficacy against various sarbecoviruses, making it a promising candidate for combatting COVID-19 and related diseases. This study underscores the therapeutic potential of targeting the Nsp1/SL1 axis and lays the foundation for innovative antiviral interventions, ultimately fortifying global preparedness against future viral threats.

2.
Methods Mol Biol ; 2837: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044070

RESUMEN

Hepatitis B, the leading cause of liver diseases worldwide, is a result of infection with hepatitis B virus (HBV). Due to its obligate intracellular life cycle, culture systems for efficient HBV replication are vital. Although basic and translational research on HBV has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent improvements in cell culture models based on stem cell technology for HBV replication and infection studies. Here we describe a protocol for the differentiation of human stem cell-derived hepatocyte-like cells (HLCs) and subsequent HBV infection. HLCs are capable of expressing hepatocyte markers and host factors important for hepatic function maintenance. These cells fully support HBV infection and virus-host interactions. Stem cell-derived HLCs provide a new tool for antiviral drug screening and development.


Asunto(s)
Diferenciación Celular , Virus de la Hepatitis B , Hepatitis B , Hepatocitos , Replicación Viral , Humanos , Hepatocitos/virología , Hepatocitos/citología , Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Técnicas de Cultivo de Célula/métodos , Células Madre/virología , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas
3.
Commun Chem ; 7(1): 146, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942965

RESUMEN

Pyridine, an essential structure in drug development, shows a wide array of bioactivities according to its substitution patterns. Among the bioactive pyridines, meta-substituted pyridines suffer from limited synthetic approaches despite their significance. In this study, we present a condensation-based synthetic method enabling the facile incorporation of biologically relevant functional groups at the meta position of pyridine. This methodology unveiled the concealed reactivity of 3-formyl(aza)indoles as diformylmethane analogs for synthesizing dissymmetric di-meta-substituted pyridines without ortho and para substitutions. Furthermore, we uncovered resonance-assisted hydrogen bonding (RAHB) as the requirement for the in situ generation of enamines, the key intermediates of this transformation. Successful development of the designed methodology linked to wide applications-core remodeling of natural products, drug-natural product conjugation, late-stage functionalization of drug molecules, and synthesis of the regioisomeric CZC24832. Furthermore, we discovered anti-inflammatory agents through the functional evaluation of synthesized bi-heteroaryl analogs, signifying the utility of this methodology.

4.
Chem Sci ; 15(10): 3588-3595, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455026

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative disease characterized by movement disorder. Despite current therapeutic efforts, PD progression and the loss of dopaminergic neurons in the substantia nigra remain challenging to prevent due to the complex and unclear molecular mechanism involved. We adopted a phenotype-based drug screening approach with neuronal cells to overcome these limitations. In this study, we successfully identified a small molecule with a promising therapeutic effect for PD treatment, called inflachromene (ICM), through our phenotypic screening strategy. Subsequent target identification using fluorescence difference in two-dimensional gel electrophoresis (FITGE) revealed that ICM ameliorates PD by targeting a specific form of Keap1. This interaction led to upregulating various antioxidants, including HO-1, NQO1, and glutathione, ultimately alleviating PD symptoms. Furthermore, ICM exhibited remarkable efficacy in inhibiting the loss of dopaminergic neurons and the activation of astrocytes and microglia, which are critical factors in PD pathology. Our findings suggest that the phenotypic approach employed in this study identified that ICM has potential for PD treatment, offering new hope for more effective therapeutic interventions in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...