Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Nurs Scholarsh ; 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402575

RESUMEN

INTRODUCTION: Inpatients need to recognize their fall risk accurately and objectively. Nurses need to assess how patients perceive their fall risk and identify the factors that influence patients' fall risk perception. PURPOSE: This study aims to explore the congruency between nurses' fall risk assessment and patients' perception of fall risk and identify factors related to the non-congruency of fall risk. DESIGNS: A descriptive and cross-sectional design was used. The study enrolled 386 patients who were admitted to an acute care hospital. Six nurses assessed the participants' fall risk. Congruency was classified using the Morse Fall Scale for nurses and the Fall Risk Perception Questionnaire for patients. FINDINGS: The nurses' fall risk assessments and patients' fall risk perceptions were congruent in 57% of the participants. Underestimation of the patient's risk of falling was associated with gender (women), long hospitalization period, department (orthopedics), low fall efficacy, and history of falls before hospitalization. Overestimation of fall risk was associated with age group, gender (men), department, and a high health literacy score. In the multiple logistic regression, the factors related to the underestimation of fall risk were hospitalization period and department, and the factors related to the overestimation of fall risk were health literacy and department. CONCLUSIONS: Nurses should consider the patient's perception of fall risk and incorporate it into fall prevention interventions. CLINICAL RELEVANCE: Nurses need to evaluate whether patients perceive the risk of falling consistently. For patients who underestimate or overestimate their fall risk, it may be helpful to consider clinical and fall-related characteristics together when evaluating their perception of fall risk.

2.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34699746

RESUMEN

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitofagia , Células-Madre Neurales/enzimología , Neurogénesis , Neuronas/enzimología , Proteoma , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Línea Celular , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteostasis , Proteínas Proto-Oncogénicas/genética , Factores de Tiempo , Proteínas Supresoras de Tumor/genética
3.
Development ; 146(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31023875

RESUMEN

Bicaudal-C (Bicc1) is a conserved RNA-binding protein that represses the translation of selected mRNAs to control development. In Xenopus embryos, Bicc1 binds and represses specific maternal mRNAs to control anterior-posterior cell fates. However, it is not known how Bicc1 binds its RNA targets or how binding affects Bicc1-dependent embryogenesis. Focusing on the KH domains, we analyzed Bicc1 mutants for their ability to bind RNA substrates in vivo and in vitro Analyses of these Bicc1 mutants demonstrated that a single KH domain, KH2, was crucial for RNA binding in vivo and in vitro, while the KH1 and KH3 domains contributed minimally. The Bicc1 mutants were also assayed for their ability to repress translation, and results mirrored the RNA-binding data, with KH2 being the only domain essential for repression. Finally, maternal knockdown and rescue experiments indicated that the KH domains were essential for the regulation of embryogenesis by Bicc1. These data advance our understanding of how Bicc1 selects target mRNAs and provide the first direct evidence that the RNA binding functions of Bicc1 are essential for both Bicc1-dependent translational repression and maternal vertebrate development.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Animales , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Immunoblotting , Inmunoprecipitación , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Xenopus/genética , Xenopus laevis
4.
Cell Signal ; 44: 1-9, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29284139

RESUMEN

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.


Asunto(s)
Ciclina D1/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Cresta Neural/crecimiento & desarrollo , Animales , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Regulación de la Expresión Génica , Ratones , Cultivo Primario de Células , Transducción de Señal
5.
J Vis Exp ; (125)2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28784977

RESUMEN

Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.


Asunto(s)
Electroforesis en Gel de Poliacrilamida , Proteínas/metabolismo , ARN/metabolismo , Animales , Colorantes Fluorescentes/química , Proteínas de Neoplasias/genética , Unión Proteica , Proteínas/química , ARN/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Grabación en Video , Xenopus/metabolismo
7.
Adv Exp Med Biol ; 953: 49-82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27975270

RESUMEN

The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.


Asunto(s)
Desarrollo Embrionario/genética , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Xenopus laevis/crecimiento & desarrollo , Animales , Ciclo Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , ARN Mensajero/genética , Transcripción Genética , Xenopus laevis/genética
8.
Development ; 143(5): 864-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811381

RESUMEN

Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Desarrollo Embrionario , Femenino , MicroARNs/metabolismo , Mutación , Oligonucleótidos Antisentido/genética , Oocitos/metabolismo , Fenotipo , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , Transducción de Señal , Transcripción Genética
9.
J Biol Chem ; 289(11): 7497-504, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24478311

RESUMEN

Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , ARN/química , Proteínas de Xenopus/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Luciferasas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Xenopus laevis
10.
RNA ; 19(11): 1575-82, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24062572

RESUMEN

The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.


Asunto(s)
Proteínas Ligadas a GPI/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/química , Análisis de Secuencia de ARN , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(35): 14572-7, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21844336

RESUMEN

The posttranslational addition of palmitate to cysteines occurs ubiquitously in eukaryotic cells, where it functions in anchoring target proteins to membranes and in vesicular trafficking. Here we show that the Saccharomyces cerevisiae palmitoyltransferase Pfa4 enhanced heterochromatin formation at the cryptic mating-type loci HMR and HML via Rif1, a telomere regulatory protein. Acylated Rif1 was detected in extracts from wild-type but not pfa4Δ mutant cells. In a pfa4Δ mutant, Rif1-GFP dispersed away from foci positioned at the nuclear periphery into the nucleoplasm. Sir3-GFP distribution was also perturbed, indicating a change in the nuclear dynamics of heterochromatin proteins. Genetic analyses indicated that PFA4 functioned upstream of RIF1. Surprisingly, the pfa4Δ mutation had only mild effects on telomeric regulation, suggesting Rif1's roles at HM loci and telomeres were more complexly related than previously thought. These data supported a model in which Pfa4-dependent palmitoylation of Rif1 anchored it to the inner nuclear membrane, influencing its role in heterochromatin dynamics.


Asunto(s)
Heterocromatina/metabolismo , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/genética , Proteínas de Unión a Telómeros/fisiología , Acilación , Aciltransferasas/fisiología , Lipoilación , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero
12.
Genes Dev ; 24(13): 1418-33, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20595233

RESUMEN

The origin recognition complex (ORC) binds to the specific positions on chromosomes that serve as DNA replication origins. Although ORC is conserved from yeast to humans, the DNA sequence elements that specify ORC binding are not. In particular, metazoan ORC shows no obvious DNA sequence specificity, whereas yeast ORC binds to a specific DNA sequence within all yeast origins. Thus, whereas chromatin must play an important role in metazoan ORC's ability to recognize origins, it is unclear whether chromatin plays a role in yeast ORC's recognition of origins. This study focused on the role of the conserved N-terminal bromo-adjacent homology domain of yeast Orc1 (Orc1BAH). Recent studies indicate that BAH domains are chromatin-binding modules. We show that the Orc1BAH domain was necessary for ORC's stable association with yeast chromosomes, and was physiologically relevant to DNA replication in vivo. This replication role was separable from the Orc1BAH domain's previously defined role in transcriptional silencing. Genome-wide analyses of ORC binding in ORC1 and orc1bahDelta cells revealed that the Orc1BAH domain contributed to ORC's association with most yeast origins, including a class of origins highly dependent on the Orc1BAH domain for ORC association (orc1bahDelta-sensitive origins). Orc1bahDelta-sensitive origins required the Orc1BAH domain for normal activity on chromosomes and plasmids, and were associated with a distinct local nucleosome structure. These data provide molecular insights into how the Orc1BAH domain contributes to ORC's selection of replication origins, as well as new tools for examining conserved mechanisms governing ORC's selection of origins within eukaryotic chromosomes.


Asunto(s)
Cromatina/genética , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Sitios de Unión , Secuencia Conservada , Replicación del ADN , Estructura Terciaria de Proteína , Eliminación de Secuencia/genética
13.
Plant Physiol ; 148(1): 246-58, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18660433

RESUMEN

CDC48/p97 is a conserved homohexameric AAA-ATPase chaperone required for a variety of cellular processes but whose role in the development of a multicellular model system has not been examined. Here, we have used reverse genetics, visualization of a functional Arabidopsis (Arabidopsis thaliana) CDC48 fluorescent fusion protein, and morphological analysis to examine the subcellular distribution and requirements for AtCDC48A in planta. Homozygous Atcdc48A T-DNA insertion mutants arrest during seedling development, exhibiting decreased cell expansion and displaying pleiotropic defects in pollen and embryo development. Atcdc48A insertion alleles show significantly reduced male transmission efficiency due to defects in pollen tube growth. Yellow fluorescent protein-AtCDC48A, a fusion protein that functionally complements the insertion mutant defects, localizes in the nucleus and cytoplasm and is recruited to the division mid-zone during cytokinesis. The pattern of nuclear localization differs according to the stage of the cell cycle and differentiation state. Inducible expression of an Atcdc48A Walker A ATPase mutant in planta results in cytokinesis abnormalities, aberrant cell divisions, and root trichoblast differentiation defects apparent in excessive root hair emergence. At the biochemical level, our data suggest that the endogenous steady-state protein level of AtCDC48A is dependent upon the presence of ATPase-active AtCDC48A. These results demonstrate that CDC48A/p97 is critical for cytokinesis, cell expansion, and differentiation in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Aumento de la Célula , Citocinesis , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Homocigoto , Mutagénesis Insercional , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Regiones Promotoras Genéticas , Plantones/metabolismo
14.
J Biol Chem ; 282(8): 5217-24, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17190830

RESUMEN

CDC48/p97 is an essential AAA-ATPase chaperone that functions in numerous diverse cellular activities through its interaction with specific adapter proteins. The ubiquitin regulatory X (UBX)-containing protein, PUX1, functions to regulate the hexameric structure and ATPase activity of AtCDC48. To characterize the biochemical mechanism of PUX1 action on AtCDC48, we have defined domains of both PUX1 and AtCDC48 that are critical for interaction and oligomer disassembly. Binding of PUX1 to AtCDC48 was mediated through a region containing both the UBX domain and the immediate C-terminal flanking amino acids (UBX-C). Like other UBX domains, the primary binding site for the UBX-C of PUX1 is the N(a) domain of AtCDC48. Alternative plant PUX protein UBX domains also bind AtCDC48 through the N terminus but were found not to be able to substitute for the action imparted by the UBX-C of PUX1 in hexamer disassembly, suggesting unique features for the UBX-C of PUX1. We propose that the PUX1 UBX-C domain modulates a second binding site on AtCDC48 required for the N-terminal domain of PUX1 to interact with and promote dissociation of the AtCDC48 hexamer. Utilizing Atcdc48 ATP hydrolysis and binding mutants, we demonstrate that PUX1 binding was not affected but that hexamer disassembly was significantly influenced by the ATP status of AtCDC48. ATPase activity in both the D1 and the D2 domains was critical for PUX1-mediated AtCDC48 hexamer disassembly. Together these results provide new mechanistic insight into how the hexameric status and ATPase activity of AtCDC48 are modulated.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Mutación , Unión Proteica/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/genética , Eliminación de Secuencia , Proteína que Contiene Valosina
15.
J Biol Chem ; 279(52): 54264-74, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15498773

RESUMEN

p97/CDC48 is a highly abundant hexameric AAA-ATPase that functions as a molecular chaperone in numerous diverse cellular activities. We have identified an Arabidopsis UBX domain-containing protein, PUX1, which functions to regulate the oligomeric structure of the Arabidopsis homolog of p97/CDC48, AtCDC48, as well as mammalian p97. PUX1 is a soluble protein that co-fractionates with non-hexameric AtCDC48 and physically interacts with AtCDC48 in vivo. Binding of PUX1 to AtCDC48 is mediated through the UBX-containing C-terminal domain. However, disassembly of the chaperone is dependent upon the N-terminal domain of PUX1. These findings provide evidence that the assembly and disassembly of the hexameric p97/CDC48 complex is a dynamic process. This new unexpected level of regulation for p97/CDC48 was demonstrated to be critical in vivo as pux1 loss-of-function mutants display accelerated growth relative to wild-type plants. These results suggest a role for AtCDC48 and PUX1 in regulating plant growth.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Animales , Arabidopsis/química , Arabidopsis/embriología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Cromatografía de Afinidad , Escherichia coli/genética , Expresión Génica , Immunoblotting , Cinética , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Proteína que Contiene Valosina
16.
Plant Physiol ; 130(3): 1241-53, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12427991

RESUMEN

The components of the cellular machinery that accomplish the various complex and dynamic membrane fusion events that occur at the division plane during plant cytokinesis, including assembly of the cell plate, are not fully understood. The most well-characterized component, KNOLLE, a cell plate-specific soluble N-ethylmaleimide-sensitive fusion protein (NSF)-attachment protein receptor (SNARE), is a membrane fusion machine component required for plant cytokinesis. Here, we show the plant ortholog of Cdc48p/p97, AtCDC48, colocalizes at the division plane in dividing Arabidopsis cells with KNOLLE and another SNARE, the plant ortholog of syntaxin 5, SYP31. In contrast to KNOLLE, SYP31 resides in defined punctate membrane structures during interphase and is targeted during cytokinesis to the division plane. In vitro-binding studies demonstrate that AtCDC48 specifically interacts in an ATP-dependent manner with SYP31 but not with KNOLLE. In contrast, we show that KNOLLE assembles in vitro into a large approximately 20S complex in an Sec18p/NSF-dependent manner. These results suggest that there are at least two distinct membrane fusion pathways involving Cdc48p/p97 and Sec18p/NSF that operate at the division plane to mediate plant cytokinesis. Models for the role of AtCDC48 and SYP31 at the division plane will be discussed.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Ciclo Celular/metabolismo , Fusión de Membrana/fisiología , Proteínas de Transporte Vesicular , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Etilmaleimida/metabolismo , Inmunohistoquímica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas Sensibles a N-Etilmaleimida , Proteínas Nucleares/metabolismo , Isoformas de Proteínas , Proteínas Qa-SNARE , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA