Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39150145

RESUMEN

Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.

2.
Mater Today Bio ; 26: 101055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693995

RESUMEN

Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult. In this study, porous microgels have been fabricated using microfluidic channels to effectively culture NK cells. Microgel fabrication using microfluidics can be mass-produced in a short time and can be made in a uniform size. Microgels consist of photo cross-linkable polymers such as methacrylic gelatin (GelMa) and can be regulated via controlled GelMa concentrations. NK92 cell-laden three-dimensional (3D) microgels increase mRNA expression levels, NK92 cell proliferation, cytokine release, and anti-tumor efficacy, compared with two-dimensional (2D) cultures. In addition, the study confirms that 3D-cultured NK92 cells enhance anti-tumor effects compared with enhancement by 2D-cultured NK92 cells in the K562 leukemia mouse model. Microgels containing healthy NK cells are designed to completely degrade after 5 days allowing NK cells to be released to achieve cell-to-cell interaction with cancer cells. Overall, this microgel system provides a new cell culture platform for the effective culturing of NK cells and a new strategy for developing immune cell therapy.

3.
Sci Rep ; 14(1): 7178, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531959

RESUMEN

Polyhexamethylene guanidine phosphate (PHMG-p) is a major component in humidifier disinfectants, which cause life-threatening lung injuries. However, to our knowledge, no published studies have investigated associations between PHMG-p dose and lung damage severity with long-term follow-up. Therefore, we evaluated longitudinal dose-dependent changes in lung injuries using repeated chest computed tomography (CT). Rats were exposed to low (0.2 mg/kg, n = 10), intermediate (1.0 mg/kg, n = 10), and high (5.0 mg/kg, n = 10) doses of PHMG-p. All rats underwent repeated CT scans after 10 and 40 weeks following the first exposure. All CT images were quantitatively analyzed using commercial software. Inflammation/fibrosis and tumor counts underwent histopathological evaluation. In both radiological and histopathologic results, the lung damage severity increased as the PHMG-p dose increased. Moreover, the number, size, and malignancy of the lung tumors increased as the dose increased. Bronchiolar-alveolar hyperplasia developed in all groups. During follow-up, there was intergroup variation in bronchiolar-alveolar hyperplasia progression, although bronchiolar-alveolar adenomas or carcinomas usually increase in size over time. Thirty-three carcinomas were detected in the high-dose group in two rats. Overall, lung damage from PHMG-p and the number and malignancy of lung tumors were shown to be dose-dependent in a rat model using repeated chest CT scans during a long-term follow-up.


Asunto(s)
Carcinoma , Lesión Pulmonar , Neoplasias Pulmonares , Ratas , Animales , Estudios de Seguimiento , Carcinógenos , Hiperplasia , Guanidinas , Carcinogénesis
4.
Bioact Mater ; 37: 172-190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549771

RESUMEN

Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.

5.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360222

RESUMEN

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Asunto(s)
Gelatina , Andamios del Tejido , Andamios del Tejido/química , Gelatina/química , Metacrilatos/química , Impresión Tridimensional , Materiales Biocompatibles , Ingeniería de Tejidos
6.
Biofabrication ; 16(2)2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38306679

RESUMEN

Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Poliésteres/química , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...