Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Small ; 20(42): e2400737, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38874112

RESUMEN

Point defects play a crucial role in determining the properties of atomically thin semiconductors. This work demonstrates the controlled formation of different types of defects and their comprehensive optical characterization using hyperspectral line imaging (HSLI). Distinct optical responses are observed in monolayer semiconductors grown under different stoichiometries using metal-organic chemical vapor deposition. HSLI enables the simultaneous measurement of 400 spectra, allowing for statistical analysis of optical signatures at close to a centimeter scale. The study discovers that chalcogen-rich samples exhibit remarkable optical uniformity due to reduced precursor accumulation compared to the metal-rich case. The utilization of HSLI as a facile and reliable characterization tool pushes the boundaries of potential applications for atomically thin semiconductors in future devices.

2.
J Adv Res ; 58: 211-228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37634628

RESUMEN

INTRODUCTION: Corrosion-induced deterioration of infrastructure is a growing global concern. The development and application of corrosion inhibitors are one of the most effective approaches to protect steel rebar from corrosion. Hence, this study focuses on a novel hydrazone derivative, (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)aceto-hydrazide (HIND), and its potential application to mitigate corrosion in steel rebar exposed to chloride-contaminated concrete pore solutions (ClSCPS). OBJECTIVES: The research aims to evaluate the anti-corrosion capabilities of HIND on steel rebar within a simulated corrosive environment, focusing on the mechanisms of its inhibitory effect. METHODS: The corrosion of steel rebar exposed to the ClSCPS was studied through weight loss and electrochemical methods. The surface morphology of steel rebar surface was characterized by FE-SEM-EDS, AFM; oxidation states of the steel rebar and crystal structures were examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. Further, experimental findings were complemented by theoretical studies using self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. The performance of HIND was monitored at an optimal concentration over a period of 30 days. RESULTS: The results indicated a significant reduction in steel rebar corrosion upon introducing HIND. The inhibitor molecules adhered to the steel surface, preventing further deterioration and achieving an inhibition efficiency of 88.4% at 0.5 mmol/L concentration. The surface morphology analysis confirmed the positive effect of HIND on the rebar surface, showing a decrease in the surface roughness of the steel rebar from 183.5 in uninhibited to 50 nm in inhibited solutions. Furthermore, SCC-DFTB simulations revealed the presence of coordination between iron atoms and HIND active sites. CONCLUSION: The findings demonstrate the potential of HIND as an effective anti-corrosion agent in chloride-contaminated environments. Its primary adsorption mechanism involves charge transfer from the inhibitor molecules to iron atoms. Therefore, applying HIND could be an effective strategy to address corrosion-related challenges in reinforced infrastructure.

3.
Heliyon ; 9(9): e19417, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662772

RESUMEN

The waste-heat-recovery boiler with water injection (HR-B/W) applies the heat exchange between the intake air and exhaust gas with the water injection into the intake air. Previous theoretical studies have discussed that the HR-B/W would increase the thermal efficiency of the boiler by the active heat exchange between the intake air and exhaust gas. It has also been discussed that the increased fraction of water vapor in the air would reduce the flame temperature which in turn decreases the NOx emission. However, the potential performance of the HR-B/W has not been validated through practical boiler tests by considering the evaporation characteristics of the injected water, which plays a critical role in the performance of the HR-B/W. In this study the effects of water injection into the intake air on the thermal efficiency and pollutant emissions of the waste-heat-recovery boiler are investigated using a commercial 24 kW condensing boiler in full load condition. Thermodynamic analysis is performed to evaluate the adequate amount of water injection and trace the physical properties in the boiler upon the water injection amount and evaporation characteristics. The boiler test results showed water injection can increase thermal efficiency to 4.4% point and reduce NOx and CO emissions by 69% and 33% respectively compared to those without water injection. These advantages can be further enhanced if the atomization and evaporation performance of injected water is improved.

4.
J Cerebrovasc Endovasc Neurosurg ; 24(4): 372-379, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35794749

RESUMEN

The use of a balloon guide catheter (BGC) in the endovascular management of acute ischemic stroke is known to improve the efficacy and efficiency of the procedure by reducing the risk of distal embolization. During the procedure, the balloon of the catheter causes a temporary arrest of cerebral blood flow. However, failure of the balloon to deflate during the BGC procedure can result in catastrophic complications, including aggravated hypoxic damage.
This paper aims to share the resolution and methodological analysis of our experience with BGC balloon deflation failure, which was confirmed by a reproducible experiment under similar conditions.

5.
Materials (Basel) ; 14(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34885424

RESUMEN

Supplementary cementitious materials (SCMs) and chemical additives (CA) are incorporated to modify the properties of concrete. In this paper, SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS), silica fume (SF), rice husk ash (RHA), sugarcane bagasse ash (SBA), and tire-derived fuel ash (TDFA) admixed concretes are reviewed. FA (25-30%), GGBS (50-55%), RHA (15-20%), and SBA (15%) are safely used to replace Portland cement. FA requires activation, while GGBS has undergone in situ activation, with other alkalis present in it. The reactive silica in RHA and SBA readily reacts with free Ca(OH)2 in cement matrix, which produces the secondary C-S-H gel and gives strength to the concrete. SF addition involves both physical contribution and chemical action in concrete. TDFA contains 25-30% SiO2 and 30-35% CaO, and is considered a suitable secondary pozzolanic material. In this review, special emphasis is given to the various chemical additives and their role in protecting rebar from corrosion. Specialized concrete for novel applications, namely self-curing, self-healing, superhydrophobic, electromagnetic (EM) wave shielding and self-temperature adjusting concretes, are also discussed.

6.
Materials (Basel) ; 14(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34885441

RESUMEN

An attempt has been made on a constructive approach to evaluate the performance of snail shell ash (SSA) for its corrosion performance under marine environments. Corrosion performance of steel rebar in chloride-contaminated SSA with (0% to 50%) replacement levels of cement extract medium was examined through electrochemical and weight loss techniques. Initially, snail shell powder (SSP) is made by pulverizing and subsequently SSA is by thermal decomposition methods. Both SSP and SSA were characterized by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, and energy dispersion X-ray spectroscopy. Concrete cubes with 0% to 50% replacement levels of cement by SSA were evaluated for their mechanical properties. A critical level of 20 to 30% SSA improved both corrosion resistance and strength of concrete. Extrapolation modeling for the strength and corrosion rate with respect to later age were made. SSA is a suitable replacement material for natural limestone in cement productions.

7.
ACS Appl Mater Interfaces ; 13(36): 43676-43695, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463095

RESUMEN

The present study has been focused on the environment-friendly corrosion inhibitor. Conifer cone (Pinus resinosa) has been used as a novel corrosion inhibitor to mitigate the corrosion of steel rebars in simulated concrete pore solutions (SCPS) in the presence and absence of chloride ions. The corrosion inhibitor is extracted by simple chemical methods. The functional groups present in the extracted conifer cone (ECC) powder are characterized as well as the surface morphology of ECC has been examined. The corrosion inhibition performance has been evaluated by the electrochemical and weight loss methods. The experimental results indicate that ECC possesses a corrosion inhibition efficiency of 81.2% at a dosage of 1000 mg·L-1, after 720 h of immersion in chloride-contaminated SCPS. Adsorption isotherm and their standard Gibbs free energy (ΔGads0) values are calculated by Langmuir, Freundlich, and Temkin isotherm methods, and the results indicate that the ECC is initially adsorbed on the steel rebar surface by physisorption and then it turns to chemisorption. The steel rebar surfaces have been characterized after exposure to the ECC containing SCPS, and the results indicate that the ECC containing cationic adsorbate molecules, which interact with steel rebar, leads to retardation of metal dissolution in corrosive chloride medium.

8.
Brain Dev ; 43(9): 912-918, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34116881

RESUMEN

BACKGROUND: PURA-related neurodevelopmental disorders (PURA-NDDs) include 5q31.3 deletion syndrome and PURA syndrome. PURA-NDDs are characterized by neonatal hypotonia, moderate to severe global developmental delay/intellectual disability (GDD/ID), facial dysmorphism, epileptic seizures, nonepileptic movement disorders, and ophthalmological problems. PURA-NDDs have recently been identified and underestimated in neurodevelopmental cohorts, but their diagnosis is still challenging. METHODS: We retrospectively reviewed the clinical characteristics, genetic spectrum, and diagnostic journey of patients with PURA-NDDs. RESULTS: We report 2 patients with 5q31.3 microdeletion and 5 with PURA pathogenic variants. They demonstrated hypotonia (7/7, 100%), feeding difficulties (4/5, 80%), and respiratory problems (4/7, 57%) in the neonatal period. All of them had severe GDD/ID and could not achieve independent walking and verbal responses. Distinctive facial features of open-tented upper vermilion, long philtrum, and anteverted nares and poor visual fixation and tracking with or without nystagmus were most commonly found (5/7, 71.4%). There were no significant differences in clinical phenotypes between 5q31.3 microdeletion syndrome and PURA syndrome. PURA-NDDs need to be considered as a differential diagnosis in individuals who show severe hypotonia, including feeding difficulties since birth and severe developmental retardation with distinctive facial and ophthalmological features. CONCLUSIONS: Our data expands the phenotypic and genetic spectrum of PURA-NDD. Next-generation sequencing methods based on the detailed phenotypic evaluation would shorten the diagnostic delay and would help this rare disorder become a recognizable cause of neurodevelopmental delay.


Asunto(s)
Proteínas de Unión al ADN/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Niño , Preescolar , Deleción Cromosómica , Cara , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Fenotipo , Estudios Retrospectivos
9.
Materials (Basel) ; 14(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925649

RESUMEN

For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015-15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (µ/ρ) were calculated, and the attained µ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G-P) fitting approach at 1-40 mfp penetration depths (PDs), within the 0.015-15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger µ, µ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm-1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of 'Bi' (80.6813 wt%) and moderate 'B' (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of 'B' element in it.

10.
Sci Rep ; 10(1): 22009, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319826

RESUMEN

Prediabetes (PD) is a high-risk state of developing type 2 diabetes, and cardiovascular and metabolic diseases. Metabolomics-based biomarker studies can provide advanced opportunities for prediction of PD over the conventional methods. Here, we aimed to identify metabolic markers and verify their abilities to predict PD, as compared to the performance of the traditional clinical risk factor (CRF) and previously reported metabolites in other population-based studies. Targeted metabolites quantification was performed in 1723 participants in the Korea Association REsource (KARE) cohort, from which 500 normal individuals were followed up for 6 years. We selected 12 significant metabolic markers, including five amino acids, four glycerophospholipids, two sphingolipids, and one acylcarnitine, at baseline, resulting in a predicted incidence of PD with an area under the curve (AUC) of 0.71 during follow-up. The performance of these metabolic markers compared to that of fasting glucose was significantly higher in obese patients (body mass index: BMI ≥ 25 kg/m2, 0.79 vs. 0.58, P < 0.001). The combination with metabolic markers, CRF, and fasting glucose yielded the best prediction performance (AUC = 0.86). Our results revealed that metabolic markers were not only associated with the risk of PD, but also improved the prediction performance in combination with conventional approaches.


Asunto(s)
Biomarcadores/metabolismo , Estado Prediabético/metabolismo , Área Bajo la Curva , Índice de Masa Corporal , Femenino , Estudios de Seguimiento , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Análisis de Regresión , República de Corea
11.
Molecules ; 25(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213017

RESUMEN

Graphene is one of the most favorite materials for materials science research owing to its distinctive chemical and physical properties, such as superior conductivity, extremely larger specific surface area, and good mechanical/chemical stability with the flexible monolayer structure. Graphene is considered as a supreme matrix and electron arbitrator of semiconductor nanoparticles for environmental pollution remediation. The present review looks at the recent progress on the graphene-based metal oxide and ternary composites for photocatalysis application, especially for the application of the environmental remediation. The challenges and perspectives of emerging graphene-based metal oxide nanocomposites for photocatalysis are also discussed.


Asunto(s)
Grafito/química , Luz , Nanocompuestos/química , Semiconductores , Contaminantes Químicos del Agua/aislamiento & purificación , Catálisis/efectos de la radiación
12.
Materials (Basel) ; 13(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824540

RESUMEN

In the present study, different contents, i.e., 1-3% of 0.5 M ammonium phosphate mono basic (APMB), were used as corrosion inhibitor to reduce the corrosion of steel rebar. Electrochemical impedance spectroscopy (EIS) results showed that up to 24 h of exposure, polarization resistance (Rp) and passive/oxide film resistance (Ro) gradually decreased in simulated concrete pore (SCP) + 3.5 wt.% NaCl solution owing to the reduction in pH of the solution. The steel rebar exposed in 2% inhibitor containing SCP + 3.5 wt.% NaCl solution exhibited 90% inhibition efficiency after 1 h of exposure. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of thermodynamically very stable and sparingly soluble goethite (α-FeOOH), maghemite (γ-Fe2O3), and iron phosphate (FePO4) as passive/oxide film onto the steel rebar surface exposed to 2% inhibitor containing SCP + 3.5 wt.% NaCl solution.

13.
Molecules ; 25(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825307

RESUMEN

In the present study, different amounts, i.e., 1-3 v/v% of 1 M ammonium phosphate monobasic, were used as an eco-friendly corrosion inhibitor to mitigate the corrosion of steel rebar exposed to simulated concrete pore (SCP) + 3.5 wt% NaCl solution at a prolonged duration. Potentiodynamic polarization results show that as the amount of inhibitor is increased, the corrosion resistance of steel rebar is increased. The steel rebar exposed to 3% inhibitor-containing SCP + 3.5 wt% NaCl solution exhibited nobler corrosion potential (Ecorr), the lowest corrosion current density (icorr), and 97.62% corrosion inhibition efficiency after 1 h of exposure. The steel rebars exposed to 3% inhibitor-containing SCP + 3.5 wt% NaCl solution revealed higher polarization resistance (Rp) and film resistance (Ro) with exposure periods compared to other samples owing to the formation of passive film. The scanning electron microscopy (SEM) of steel rebar exposed to 3% inhibitor-containing SCP + 3.5 wt% NaCl solution showed homogenous and uniform dendritic passive film which covers all over the surface, whereas, bare, i.e., SCP + 3.5 wt% NaCl solution exposed samples exhibited pitting and irregular morphology. Raman spectroscopy results confirm the formation of goethite (α-FeOOH), maghemite (γ-Fe2O3), and iron phosphate (FePO4) as a passive film onto the steel rebar surface exposed to 3% inhibitor-containing SCP + 3.5 wt% NaCl solution. These phases are responsible for the corrosion mitigation of steel rebar which are very protective, adherent, and sparingly soluble.


Asunto(s)
Materiales de Construcción , Fosfatos/química , Cloruro de Sodio/química , Acero/química , Corrosión
14.
Sci Rep ; 10(1): 10577, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601312

RESUMEN

This paper reports the crystallization kinetics of (Cu60Zr25Ti15)99.3Nb0.7 bulk metallic glass under isothermal conditions. Differential scanning calorimetry (DSC) has been employed for isothermal annealing at ten different temperatures prior to the onset of crystallization (To) temperature. X-ray diffraction and transmission electron microscopy have been used to confirm the amorphous structure of the as cast sample. Crystallized volume fractions (x) are calculated from the exothermic peaks of DSC scans. Crystallized volume fractions (x) against time show sigmoidal type of curves as well as the curves become steeper at higher annealing temperatures. Continuous heating transformation diagram has been simulated to understand the stability of the bulk metallic glass. Crystallization kinetics parameters are calculated using Arrhenius and Johnson-Mehl-Avrami equations. Activation energy (Ea) and Avrami exponential factor (n) have exhibited strong correlation with crystallized volume fraction (x). The average activation energy for isothermal crystallization is found to be 330 ± 30 kJ/mol by Arrhenius equation. Nucleation activation energy (Enucleation) is found to be higher than that of growth activation energy (Egrowth). The Avrami exponential factor (n) indicates about the diffusion controlled mechanism of the nucleation and three-dimensional growth.

15.
Biosci Rep ; 39(10)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31652446

RESUMEN

Metabolome-genome wide association studies (mGWASs) are useful for understanding the genetic regulation of metabolites in complex diseases, including type 2 diabetes (T2D). Numerous genetic variants associated with T2D-related metabolites have been identified in previous mGWASs; however, these analyses seem to have difficulty in detecting the genetic variants with functional effects. An exome array focussed on potentially functional variants is an alternative platform to obtain insight into the genetics of biochemical conversion processes. In the present study, we performed an mGWAS using 27,140 non-synonymous variants included in the Illumina HumanExome BeadChip and nine T2D-related metabolites identified by a targetted metabolomics approach to evaluate 2,338 Korean individuals from the Korea Association REsource (KARE) cohort. A linear regression analysis controlling for age, sex, BMI, and T2D status as covariates was performed to identify novel non-synonymous variants associated with T2D-related metabolites. We found significant associations between glycine and CPS1 (rs1047883) and PC ae C36:0 and CYP4F2 (rs2108622) variants (P<2.05 × 10-7, after the Bonferroni correction for multiple testing). One of the two significantly associated variants, rs1047883 was newly identified whereas rs2108622 had been previously reported to be associated with T2D-related traits. These findings expand our understanding of the genetic determinants of T2D-related metabolites and provide a basis for further functional validation.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco) , Familia 4 del Citocromo P450 , Diabetes Mellitus Tipo 2 , Metaboloma/genética , Polimorfismo Genético , Anciano , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Metabolómica , Persona de Mediana Edad
16.
Sensors (Basel) ; 19(11)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212672

RESUMEN

Distracted driving jeopardizes the safety of the driver and others. Numerous solutions have been proposed to prevent distracted driving, but the number of related accidents has not decreased. Such a deficiency comes from fragile system designs where drivers are detected exploiting sensory features from strictly controlled vehicle-riding actions and unreliable driving events. We propose a system called ADDICT (Accurate Driver Detection exploiting Invariant Characteristics of smarTphone sensors), which identifies the driver utilizing the inconsistency between gyroscope and magnetometer dynamics and the interplay between electromagnetic field emissions and engine startup vibrations. These features are invariantly observable regardless of smartphone positions and vehicle-riding actions. To evaluate the feasibility of ADDICT, we conducted extensive experiments with four participants and three different vehicles by varying vehicle-riding scenarios. Our evaluation results demonstrated that ADDICT identifies the driver's smartphone with 89.1% average accuracy for all scenarios and >85% under the extreme scenario, at a marginal cost of battery consumption.

17.
Sensors (Basel) ; 19(7)2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935139

RESUMEN

There is an increasing demand for acquiring details of food nutrients especially among those who are sensitive to food intakes and weight changes. To meet this need, we propose a new approach based on deep learning that precisely estimates the composition of carbohydrates, proteins, and fats from hyperspectral signals of foods obtained by using low-cost spectrometers. Specifically, we develop a system consisting of multiple deep neural networks for estimating food nutrients followed by detecting and discarding estimation anomalies. Our comprehensive performance evaluation demonstrates that the proposed system can maximize estimation accuracy by automatically identifying wrong estimations. As such, if consolidated with the capability of reinforcement learning, it will likely be positioned as a promising means for personalized healthcare in terms of food safety.

18.
Sci Rep ; 9(1): 1382, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718733

RESUMEN

We introduce the design and implementation of a new array, the Korea Biobank Array (referred to as KoreanChip), optimized for the Korean population and demonstrate findings from GWAS of blood biochemical traits. KoreanChip comprised >833,000 markers including >247,000 rare-frequency or functional variants estimated from >2,500 sequencing data in Koreans. Of the 833 K markers, 208 K functional markers were directly genotyped. Particularly, >89 K markers were presented in East Asians. KoreanChip achieved higher imputation performance owing to the excellent genomic coverage of 95.38% for common and 73.65% for low-frequency variants. From GWAS (Genome-wide association study) using 6,949 individuals, 28 associations were successfully recapitulated. Moreover, 9 missense variants were newly identified, of which we identified new associations between a common population-specific missense variant, rs671 (p.Glu457Lys) of ALDH2, and two traits including aspartate aminotransferase (P = 5.20 × 10-13) and alanine aminotransferase (P = 4.98 × 10-8). Furthermore, two novel missense variants of GPT with rare frequency in East Asians but extreme rarity in other populations were associated with alanine aminotransferase (rs200088103; p.Arg133Trp, P = 2.02 × 10-9 and rs748547625; p.Arg143Cys, P = 1.41 × 10-6). These variants were successfully replicated in 6,000 individuals (P = 5.30 × 10-8 and P = 1.24 × 10-6). GWAS results suggest the promising utility of KoreanChip with a substantial number of damaging variants to identify new population-specific disease-associated rare/functional variants.


Asunto(s)
Bancos de Muestras Biológicas , Sangre/metabolismo , Variación Genética , Adulto , Anciano , Sitios Genéticos , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Persona de Mediana Edad , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , República de Corea
19.
Korean J Orthod ; 49(1): 12-20, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30603621

RESUMEN

OBJECTIVE: The aim of this study was to analyze the surface composition, roughness, and relative friction of metal clips from various ceramic self-ligating brackets. METHODS: Six kinds of brackets were examined. The control group (mC) consisted of interactive metal self-ligating brackets while the experimental group (CC, EC, MA, QK, and WA) consisted of interactive ceramic self-ligating brackets. Atomic force microscopy-lateral force microscopy and scanning electron microscopy-energy-dispersive X-ray spectroscopy were used to analyze the surface of each bracket clip. RESULTS: All the clips in the experimental groups were coated with rhodium except for the QK clip. The results showed that the QK clip had the lowest average roughness on the outer surface, followed by the MA, EC, WA, and CC clips. However, the CC clip had the lowest average roughness on the inner surface, followed by the QK, WA, MA, and EC clips. The QK clip also had the lowest relative friction on the outer surface, followed by the MA, EC, CC, and WA clips. Likewise, the CC clip had the lowest relative friction on the inner surface, followed by the QK, WA, MA, and EC clips. CONCLUSIONS: The surface roughness and relative friction of the rhodium-coated clips were generally higher than those of the uncoated clips.

20.
Analyst ; 143(22): 5380-5387, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30280723

RESUMEN

In point-of-care testing, in-line holographic microscopes paved the way for realizing portable cell counting systems at marginal cost. To maximize their accuracy, it is critically important to reliably count the number of cells even in noisy blood images overcoming various problems due to out-of-focus blurry cells and background brightness variations. However, previous studies could detect cells only on clean images while they failed to accurately distinguish blurry cells from background noises. To address this problem, we present a human-level blood cell counting system by synergistically integrating the methods of normalized cross-correlation (NCC) and a convolutional neural network (CNN). Our comprehensive performance evaluation demonstrates that the proposed system achieves the highest level of accuracy (96.7-98.4%) for any kinds of blood cells on a lens-free shadow image while others suffer from significant accuracy degradations (12.9-38.9%) when detecting blurry cells. Moreover, it outperforms others by up to 36.8% in accurately analyzing noisy blood images and is 24.0-40.8× faster, thus maximizing both accuracy and computational efficiency.


Asunto(s)
Recuento de Células Sanguíneas/métodos , Células Sanguíneas , Algoritmos , Animales , Holografía/métodos , Humanos , Ratones , Microscopía/métodos , Células 3T3 NIH , Redes Neurales de la Computación , Sistemas de Atención de Punto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...