Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39007843

RESUMEN

Staphylococcus aureus (S. aureus) is an opportunistic infectious pathogen, which causes a high mortality rate during bloodstream infections. The early detection of virulent strains in patients' blood samples is of medical interest for rapid diagnosis. The main virulent factors identified in patient isolates include leukocidins that bind to specific membrane receptors and lyse immune cells and erythrocytes. Duffy antigen receptor for chemokines (DARC) on the surface of specific cells is a main target of leukocidins such as gamma-hemolysin AB (HlgAB) and leukocidin ED (LukED). Among them, HlgAB is a conserved and critical leukocidin that binds to DARC and forms pores on the cell membranes, leading to cell lysis. Current methods are based on ELISA or bacterial culture, which takes hours to days. For detecting HlgAB with faster response and higher sensitivity, we developed a biosensor that combines single-walled carbon nanotube field effect transistors (swCNT-FETs) with immobilized DARC receptors as biosensing elements. DARC was purified from a bacterial expression system and successfully reconstituted into nanodiscs that preserve binding capability for HlgAB. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) showed an increase of the DARC-containing nanodisc size in the presence of HlgAB, indicating the formation of HlgAB prepore or pore complexes. We demonstrate that this sensor can specifically detect the leukocidins HlgA and HlgAB in a quantitative manner within the dynamic range of 1 fM to 100 pM with an LOD of 0.122 fM and an LOQ of 0.441 fM. The sensor was challenged with human serum spiked with HlgAB as simulated clinical samples. After dilution for decreasing nonspecific binding, it selectively detected the toxin with a similar detection range and apparent dissociation constant as in the buffer. This biosensor was demonstrated with remarkable sensitivity to detect HlgAB rapidly and has the potential as a tool for fundamental research and clinical applications, although this sensor cannot differentiate between HlgAB and LukED as both have the same receptor.

2.
Sci Adv ; 10(21): eadl2882, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781346

RESUMEN

Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.


Asunto(s)
Odorantes , Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Odorantes/análisis , Olfato/fisiología , Sinapsis/metabolismo , Reconocimiento de Normas Patrones Automatizadas/métodos , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Técnicas Biosensibles/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38668735

RESUMEN

The host receptor is a key element in the initial stage of the virus entry into the host. The use of this host receptor is valuable as a sensing element for selectively and sensitively detecting specific viruses. Also, viruses tend to escape neutralizing antibodies through viral mutation but still utilize the cell entry process using the same host receptors, so it would be a powerful detection tool even for the mutant viruses. The angiotensin-converting enzyme 2 (ACE2) receptor, which is the representative host receptor, performs an essential function in facilitating viral penetration by interacting with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. In this study, we introduce a novel approach, where we fabricated a carbon nanotube field-effect transistor (CNT-FET) sensor and combined it with ACE2 receptor-embedded nanodisc (ND). ACE2 was produced using an E. coli expression system, purified, and integrated into the ND platform. ACE2 NDs showed robust functionality through interactions with a pseudotyped virus (PV) containing the spike protein, enabling sensitive detection of both SARS-CoV-2 and its genetic variations at 102 PFU/mL. The ACE ND-based sensor exhibited excellent selectivity by accurately differentiating SARS-CoV-2 wild-type and variants (Omicron, Delta) from other viruses (ZIKA and MERS-CoV). As a result of comparative analysis, ACE2 ND showed approximately 49% superior long-term functionality up to the second week compared to that of soluble ACE2. These findings highlight the high selectivity and sensitivity of host receptor-based sensors for detecting viral variants and provide a promising tool to prevent the spread of unknown viruses.

4.
Biomater Res ; 28: 0011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500782

RESUMEN

Background: To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. Methods: In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. Results: As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. Conclusion: Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.

5.
Protein Sci ; 32(12): e4839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967042

RESUMEN

G protein-coupled receptors (GPCRs) play crucial roles in sensory, immune, and tumor metastasis processes, making them valuable targets for pharmacological and sensing applications in various industries. However, most GPCRs have low production yields in Escherichia coli (E. coli) expression systems. To overcome this limitation, we introduced AT10 tag, an effective fusion tag that could significantly enhance expression levels of various GPCRs in E. coli and its derived cell-free protein synthesis (CFPS) system. This AT10 tag consisted of an A/T-rich gene sequence designed via optimization of translation initiation rate. It is translated into a short peptide sequence of 10 amino acids at the N-terminus of GPCRs. Additionally, effector proteins could be utilized to suppress cytotoxicity caused by membrane protein expression, further boosting GPCR production in E. coli. Enhanced expression of various GPCRs using this AT10 tag is a promising approach for large-scale production of functional GPCRs in E. coli-based CFPS and whole cell systems, enabling their potential utilization across a wide range of industrial applications.


Asunto(s)
Dihidrotaquisterol , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dihidrotaquisterol/metabolismo , Biosíntesis de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos
6.
Adv Sci (Weinh) ; 10(28): e2301570, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574255

RESUMEN

The onset of osteoporosis leads to a gradual decrease in bone density due to an imbalance between bone formation and resorption. To achieve optimal drug efficacy with minimal side effects, targeted drug delivery to the bone is necessary. Previous studies have utilized peptides that bind to hydroxyapatite, a mineral component of bone, for bone-targeted drug delivery. In this study, a hydroxyapatite binding (HAB) tag is fused to 30Kc19α-Runt-related transcription factor 2 (RUNX2) for bone-targeting. This recombinant protein can penetrate the nucleus of human mesenchymal stem cells (hMSCs) and act as a master transcription factor for osteogenesis. The HAB tag increases the binding affinity of 30Kc19α-RUNX2 to mineral deposition in mature osteoblasts and bone tissue, without affecting its osteogenic induction capability. In the osteoporosis mouse model, intravenous injection of HAB-30Kc19α-RUNX2 results in preferential accumulation in the femur and promotes bone formation while reducing toxicity in the spleen. These findings suggest that HAB-30Kc19α-RUNX2 may be a promising candidate for bone-targeted therapy in osteoporosis.

7.
ACS Sens ; 8(8): 3095-3103, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37555584

RESUMEN

Nerve agents are organophosphorus toxic chemicals that can inhibit acetylcholinesterase, leading to paralysis of the nervous system and death. Early detection of nerve agents is important for safety issues. Dimethyl methylphosphonate (DMMP) is widely used as a simulant of nerve agents, and many studies have been conducted using DMMP as a substitute for detecting nerve agents. Despite many studies on sensors for detecting DMMP, they have limitations in sensitivity and selectivity. To overcome these limitations, a nickel-decorated reduced graphene oxide (Ni-rGO) sensor with human olfactory receptor hOR2T7 nanodiscs was utilized to create a bioelectronic nose platform for DMMP gas detection. hOR2T7 was produced and reconstituted into nanodiscs for enhancing the sensor's stability, especially for detection in a gas phase. It could detect DMMP gas selectively and repeatedly at a concentration of 1 ppb. This sensitive and selective bioelectronic nose can be applied as a practical tool for the detection of gaseous chemical warfare agents in military and safety fields.


Asunto(s)
Agentes Nerviosos , Receptores Odorantes , Humanos , Níquel , Acetilcolinesterasa , Gases
8.
ACS Sens ; 8(7): 2750-2760, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37409469

RESUMEN

Bioelectronic tongues based on umami taste receptors have recently been reported for versatile applications such as food analyses. However, their practical applications are still limited, partly due to their limited stability and non-specific responses in real sample environments. Herein, we have developed a hydrogel-based bioelectronic tongue for the sensitive assessment of umami intensity in fish extract samples. In this study, the T1R1 venus flytrap of an umami taste receptor was immobilized on the gold floating electrodes of a carbon nanotube-based field-effect transistor. A polyacrylamide conducting hydrogel film was further hybridized on the sensor surface via physical adsorption, which could provide a good physiological environment to maintain the activity of receptors due to its excellent hydrophilicity and biocompatibility. The bioelectronic tongue with a receptor-embedded hydrogel structure showed a sensitive detection of umami substances down to 1 fM, and it also had a wide detection range of 10-15-10-2 M for monosodium glutamate and disodium inosinate, which covers the human taste threshold. More importantly, the proposed sensor could significantly reduce the non-specific binding of non-target molecules to a carbon nanotube channel as well as exhibit long-term stability, enabling sensitive detection of umami substances even in fish extract samples. Our hydrogel-based bioelectronic tongue provides a promising platform for future applications such as the flavor evaluation of foods and beverages.


Asunto(s)
Nanotubos de Carbono , Papilas Gustativas , Animales , Humanos , Gusto/fisiología , Hidrogeles , Lengua/fisiología
9.
Adv Mater ; 35(35): e2302996, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37377148

RESUMEN

An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.


Asunto(s)
Opsinas , Visión Ocular , Humanos , Opsinas/metabolismo , Neuronas/metabolismo , Esferoides Celulares/metabolismo
10.
Bioeng Transl Med ; 8(1): e10313, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684077

RESUMEN

Although numerous organ-on-a-chips have been developed, bone-on-a-chip platforms have rarely been reported because of the high complexity of the bone microenvironment. With an increase in the elderly population, a high-risk group for bone-related diseases such as osteoporosis, it is essential to develop a precise bone-mimicking model for efficient drug screening and accurate evaluation in preclinical studies. Here, we developed a high-throughput biomimetic bone-on-a-chip platform combined with an artificial intelligence (AI)-based image analysis system. To recapitulate the key aspects of natural bone microenvironment, mouse osteocytes (IDG-SW3) and osteoblasts (MC3T3-E1) were cocultured within the osteoblast-derived decellularized extracellular matrix (OB-dECM) built in a well plate-based three-dimensional gel unit. This platform spatiotemporally and configurationally mimics the characteristics of the structural bone unit, known as the osteon. Combinations of native and bioactive ingredients obtained from the OB-dECM and coculture of two types of bone cells synergistically enhanced osteogenic functions such as osteocyte differentiation and osteoblast maturation. This platform provides a uniform and transparent imaging window that facilitates the observation of cell-cell interactions and features high-throughput bone units in a well plate that is compatible with a high-content screening system, enabling fast and easy drug tests. The drug efficacy of anti-SOST antibody, which is a newly developed osteoporosis drug for bone formation, was tested via ß-catenin translocation analysis, and the performance of the platform was evaluated using AI-based deep learning analysis. This platform could be a cutting-edge translational tool for bone-related diseases and an efficient alternative to bone models for the development of promising drugs.

11.
Adv Biol (Weinh) ; 7(4): e2200251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36593488

RESUMEN

In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.


Asunto(s)
Técnicas Biosensibles , Receptores Odorantes , Compuestos Orgánicos Volátiles , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Biomimética
12.
Biomater Adv ; 144: 213221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36459949

RESUMEN

Recently, it has been revealed that the physical microenvironment can be translated into cellular mechanosensing to direct human mesenchymal stem cell (hMSC) differentiation. Graphene oxide (GO), a major derivative of graphene, has been regarded as a promising material for stem cell lineage specification due to its biocompatibility and unique physical properties to interact with stem cells. Especially, the lateral size of GO flakes is regarded as the key factor regulating cellular response caused by GO. In this work, GO that had been mechanically created and had an average diameter of 0.9, 1.1, and 1.7 m was produced using a ball-mill process. When size-controlled GO flakes were applied to hMSCs, osteogenic differentiation was enhanced by GO with a specific average diameter of 1.7 µm. It was confirmed that osteogenic differentiation was increased due to the enhanced expression of focal adhesion and the development of focal adhesion subordinate signals via extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MEK) pathway. These results suggest that size-controlled GO flakes could be efficient materials for promoting osteogenesis of hMSCs. Results of this study could also improve our understanding of the correlation between hMSCs and cellular responses to GO.


Asunto(s)
Grafito , Células Madre Mesenquimatosas , Humanos , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
13.
Biosens Bioelectron ; 222: 114914, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36456386

RESUMEN

Inspired by an adaptive immune system, we have developed a bioelectronic sensing platform which relies on nanovesicles for a signal amplification and can be easily adapted for the detection of new food allergens. In this work, nanovesicles with anti-immunoglobulin E (anti-IgE) antibody receptors were extracted from immune cells and immobilized on a carbon nanotube-based transistor to build a highly sensitive and selective biosensing platform. Our sensor could detect peanut allergen, arachis hypogaea 2 (Ara h 2), down to 0.1 fM and selectively discriminate target allergens in real food samples such as peanut and egg white. As a proof of concept, we demonstrated the detection of different target molecules using the same nanovesicles linked with different antibodies. Our sensor platform was also utilized to quantitatively evaluate the effect of allergy drug such as cromolyn. In this regard, our strategy can be utilized for basic research and versatile applications in food and pharmacological industries.


Asunto(s)
Técnicas Biosensibles , Hipersensibilidad a los Alimentos , Hipersensibilidad a los Alimentos/diagnóstico , Anticuerpos , Alérgenos , Arachis , Antígenos de Plantas , Proteínas de Plantas
14.
ACS Sens ; 7(11): 3399-3408, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36350699

RESUMEN

Recently, various bioelectronic nose devices based on human receptors were developed for mimicking a human olfactory system. However, such bioelectronic nose devices could operate in an aqueous solution, and it was often very difficult to detect insoluble gas odorants. Here, we report a portable bioelectronic nose platform utilizing a receptor protein-based bioelectronic nose device as a sensor and odorant-binding protein (OBP) as a transporter for insoluble gas molecules in a solution, mimicking the functionality of human mucosa. Our bioelectronic nose platform based on I7 receptor exhibited dose-dependent responses to octanal gas in real time. Furthermore, the bioelectronic platforms with OBP exhibited the sensor sensitivity improved by ∼100% compared with those without OBP. We also demonstrated the detection of odorant gas from real orange juice and found that the electrical responses of the devices with OBP were much larger than those without OBP. Since our bioelectronic nose platform allows us to directly detect gas-phase odorant molecules including a rather insoluble species, it could be a powerful tool for versatile applications and basic research based on a bioelectronic nose.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Nariz Electrónica , Nanotubos de Carbono/química , Membrana Mucosa
15.
Appl Microbiol Biotechnol ; 106(22): 7531-7545, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36227339

RESUMEN

Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of L-arginine into L-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment. KEY POINTS: • Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli • 30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active • Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Melanoma , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Polietilenglicoles , Argininosuccinato Sintasa/metabolismo , Hidrolasas/genética , Hidrolasas/farmacología , Hidrolasas/metabolismo , Melanoma/tratamiento farmacológico , Arginina/metabolismo , Línea Celular Tumoral
16.
Artif Cells Nanomed Biotechnol ; 50(1): 278-285, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191335

RESUMEN

As the acute lymphoblastic leukaemia (ALL) develops, expression of L-asparaginase (ASNase) protein is known to decrease. Therefore, deficiency of the ASNase protein would be regarded as one of the significant indications of the ALL. For the treatment of ALL, recombinant ASNase protein derived from bacterial origin is used which causes cytotoxicity by deprivation of Asn. However, short half-life of the protein is an obstacle for medical use. In order to overcome this limit, recombinant ASNase was fused to 30Kc19 with protein-stabilizing and cell-penetrating properties. As the 30Kc19 protein may induce steric hindrance, we further added a PLGLAG linker sequence (LK) between the ASNase and 30Kc19. The treatment of ASNase-LK-30Kc19 fusion protein demonstrated enhanced stability, cell-penetrating property, and anti-cancer activity. Intracellular delivery of both the non-cleaved and cleaved forms of the protein were observed, suggesting that ASNase acted both internally and externally, performing high anti-cancer activity by effective depletion of intracellular Asn. Additionally, ASNase-LK-30Kc19 showed high selectivity towards cancer cells. In terms of the dosage, releasable ASNase from ASNase-LK-30Kc19 reached the same half-maximal inhibitory concentration at a concentration five times lower than non-releasable ASNase-30Kc19. Altogether, the findings suggest that this fusion approach has potential applications in the treatment of ALL.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapéutico , Asparaginasa/genética , Asparaginasa/farmacología , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
17.
Front Bioeng Biotechnol ; 10: 911614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935494

RESUMEN

Induced pluripotent stem cells (iPSCs) have intrinsic properties, such as self-renewal ability and pluripotency, which are also shown in embryonic stem cells (ESCs). The challenge of improving the iPSC generation efficiency has been an important issue and there have been many attempts to develop iPSC generation methods. In this research, we added Lin28, known as one of the reprogramming factors, in the form of a soluble recombinant protein from E. coli to improve the efficiency of human iPSC (hiPSC) generation, in respect of alkaline phosphatase (AP)-positive colonies. To deliver Lin28 inside the cells, we generated a soluble Lin28-30Kc19 fusion protein, with 30Kc19 at the C-terminal domain of Lin28. 30Kc19, a silkworm hemolymph-derived protein, was fused due to its cell-penetrating and protein-stabilizing properties. The Lin28-30Kc19 was treated to human dermal fibroblasts (HDFs), in combination with four defined reprogramming factors (Oct4, Sox2, c-Myc, and Klf4). After 14 days of cell culture, we confirmed the generated hiPSCs through AP staining. According to the results, the addition of Lin28-30Kc19 increased the number and size of generated AP-positive hiPSC colonies. Through this research, we anticipate that this recombinant protein would be a valuable material for increasing the efficiency of hiPSC generation and for enhancing the possibility as a substitute of the conventional method.

18.
Biomater Adv ; 136: 212780, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929298

RESUMEN

Collagen is the most abundant protein in the extracellular matrix of mammals and has a great effect on various cell behaviors including adhesion, differentiation, and migration. However, it is difficult to utilize collagen gel as a physical scaffold in vitro because of its severe contraction. Decrease in the overall hydrogel volume induces changes in cell distribution, and mass transfer within the gel. Uncontrolled mechanical and physiological factors in the fibrous matrix result in uncontrolled cell behaviors in the surrounding cells. In this study, two strategies were used to minimize the contraction of collagen gel. A disk-shaped frame made of polydopamine-coated polydimethylsiloxane (PDMS) prevented horizontal contraction at the edge of the hydrogel. The sequentially cross-linked collagen gel with alginate outer shell (CA-shell) structure inhibited the vertical gel contraction. The combined method synergistically prevented the hydrogel from shrinkage in long-term 3D cell culture. We observed the shift in balance of differentiation from adipogenesis to osteogenesis in mesenchymal stem cells under the environment where gel contraction was prevented, and confirmed that this phenomenon is closely associated with the mechanotransduction based on Yes-associated protein (YAP) localization. Development of this contraction inhibition platform made it possible to investigate the influence of regulation of cellular microenvironments. The physical properties of the hydrogel fabricated in this study were similar to that of pure collagen gel but completely changed the cell behavior within the gel by inhibition of gel contraction. The platform can be used to broaden our understanding of the fundamental mechanism underlying cell-matrix interactions and reproduce extracellular matrix in vivo.


Asunto(s)
Alginatos , Hidrogeles , Alginatos/farmacología , Animales , Colágeno/farmacología , Hidrogeles/farmacología , Indoles , Mamíferos , Mecanotransducción Celular , Polímeros
19.
Biomater Adv ; 139: 213028, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882121

RESUMEN

Cells can 'sense' physical cues in the surrounding microenvironment and 'react' by changing their function. Previous studies have focused on regulating the physical properties of the matrix, such as stiffness and topography, thus changing the tension 'felt' by the cell as a result. In this study, by directly applying a quantified magnetic force to the cell, a correlation between differentiation and tension was shown. The magnetic force, quantified by magnetic tweezers, was applied by incorporating magnetotactic bacteria-isolated magnetic nanoparticles (MNPs) in human mesenchymal stem cells. As the applied tension increased, the expression levels of osteogenic differentiation marker genes and proteins were proportionally upregulated. Additionally, the translocation of YAP and RUNX2, deformation of nucleus, and activation of the MAPK signaling pathway were observed in tension-based osteogenic differentiation. Our findings provide a platform for the quantitative control of tension, a key factor in stem cell differentiation, between cells and the matrix using MNPs. Furthermore, these findings improve the understanding of osteogenic differentiation by mechanotransduction.


Asunto(s)
Nanopartículas de Magnetita , Células Madre Mesenquimatosas , Diferenciación Celular/genética , Humanos , Mecanotransducción Celular/genética , Osteogénesis/genética
20.
Nano Lett ; 22(16): 6825-6832, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35801941

RESUMEN

A photoreceptor on the retina acts as an optical waveguide to transfer an individual photonic signal to the cell inside, which is determined by the refractive index of internal materials. Under the photoactivation of photoreceptors making conformational and chemical variation in a visual cell, the optical signal modulation is demonstrated using an artificial photoreceptor-based waveguide with a controlling beam refraction. Two types of nanodiscs are made of human photoreceptor proteins, short-wavelength-sensitive opsin and rhodopsin, with spectral sensitivity. The refractive index and nonlinear features of those two photosensitive nanodiscs are investigated as fundamental properties. The photonanodiscs are photoactivated in such a way that allow refractive index tuning over 0.18 according to the biological function of the respective proteins with color-dependent response.


Asunto(s)
Refractometría , Rodopsina , Humanos , Retina , Rodopsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...