Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767330

RESUMEN

A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.


Asunto(s)
Epistasis Genética , Evolución Molecular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ADN/genética , ADN/metabolismo , Mutación , Unión Proteica
2.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732229

RESUMEN

How complicated is the genetic architecture of proteins - the set of causal effects by which sequence determines function? High-order epistatic interactions among residues are thought to be pervasive, making a protein's function difficult to predict or understand from its sequence. Most studies, however, used methods that overestimate epistasis, because they analyze genetic architecture relative to a designated reference sequence - causing measurement noise and small local idiosyncrasies to propagate into pervasive high-order interactions - or have not effectively accounted for global nonlinearity in the sequence-function relationship. Here we present a new reference-free method that jointly estimates global nonlinearity and specific epistatic interactions across a protein's entire genotype-phenotype map. This method yields a maximally efficient explanation of a protein's genetic architecture and is more robust than existing methods to measurement noise, partial sampling, and model misspecification. We reanalyze 20 combinatorial mutagenesis experiments from a diverse set of proteins and find that additive and pairwise effects, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of total variance in measured phenotypes (and >92% in every case). Only a tiny fraction of genotypes are strongly affected by third- or higher-order epistasis. Genetic architecture is also sparse: the number of terms required to explain the vast majority of variance is smaller than the number of genotypes by many orders of magnitude. The sequence-function relationship in most proteins is therefore far simpler than previously thought, opening the way for new and tractable approaches to characterize it.

3.
Science ; 376(6595): 823-830, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587978

RESUMEN

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.


Asunto(s)
Proteínas de Unión al ADN , Epistasis Genética , Evolución Molecular , Receptores de Esteroides , Secuencia de Aminoácidos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Mutación , Filogenia , Unión Proteica , Dominios Proteicos , Receptores de Esteroides/química , Receptores de Esteroides/genética
4.
Cell Rep ; 37(5): 109940, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731636

RESUMEN

Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.


Asunto(s)
Axones/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato , Órgano Vomeronasal/metabolismo , Animales , Evolución Molecular , Células HEK293 , Humanos , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Mutación , Odorantes , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores Odorantes/genética , Transducción de Señal , Relación Estructura-Actividad
5.
RNA ; 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288682

RESUMEN

The stability of mRNAs is fundamental to determining expression level and dynamics. Nonetheless, current approaches for measuring transcript half-lives (e.g. transcription shutoff) are generally toxic or technically complex. Here we describe an alternative strategy for targeted measurements of endogenous mRNA stability that is simple, inexpensive, and non-toxic. Cells are first metabolically labelled with the nucleoside analog 4-thiouridine (4sU). Extracted mRNA can then be treated with the thiol-reactive compound N-ethylmaleimide. This compound modifies 4sU nucleotides and sterically interferes with reverse transcription of 4sU-containing transcripts, disrupting their conversion into cDNA. The decay rate of non-4sU-containing pre-existing mRNA can then be monitored by quantitative PCR (qPCR). Importantly, this approach avoids the biochemical isolation of 4sU-labelled transcripts and/or RNA-seq analysis required for other metabolic-labelling strategies. In summary, our method combines the simplicity of "transcription shutoff" strategies with the accuracy of metabolic-labelling strategies for measurements of mRNA stability across a wide range of half-lives.

6.
Science ; 370(6519)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214251

RESUMEN

Hadzipasic et al (Reports, 21 February 2020, p. 912) used ancestral sequence reconstruction to identify historical sequence substitutions that putatively caused Aurora kinases to evolve allosteric regulation. We show that their results arise from using an implausible phylogeny and sparse sequence sampling. Addressing either problem reverses their inferences: Allostery and the amino acids that confer it were not gained during the diversification of eukaryotes but were lost in a subgroup of Fungi.


Asunto(s)
Aurora Quinasas , Regulación Alostérica , Secuencia de Aminoácidos , Aurora Quinasas/metabolismo , Filogenia
7.
Nat Commun ; 11(1): 1489, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198364

RESUMEN

Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.


Asunto(s)
Orientación del Axón/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Animales , Axones/metabolismo , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Drosophila , Proteínas de Drosophila/metabolismo , Mamíferos , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Dispersión de Radiación , Transducción de Señal
8.
Elife ; 82019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31880537

RESUMEN

Prokaryotic mechanosensitive (MS) channels open by sensing the physical state of the membrane. As such, lipid-protein interactions represent the defining molecular process underlying mechanotransduction. Here, we describe cryo-electron microscopy (cryo-EM) structures of the E. coli small-conductance mechanosensitive channel (MscS) in nanodiscs (ND). They reveal a novel membrane-anchoring fold that plays a significant role in channel activation and establish a new location for the lipid bilayer, shifted ~14 Å from previous consensus placements. Two types of lipid densities are explicitly observed. A phospholipid that 'hooks' the top of each TM2-TM3 hairpin and likely plays a role in force sensing, and a bundle of acyl chains occluding the permeation path above the L105 cuff. These observations reshape our understanding of force-from-lipids gating in MscS and highlight the key role of allosteric interactions between TM segments and phospholipids bound to key dynamic components of the channel.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/ultraestructura , Lípidos/química , Mecanotransducción Celular/genética , Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Canales Iónicos/química , Canales Iónicos/genética , Membrana Dobles de Lípidos/química , Lípidos/genética , Nanoestructuras/química
9.
Proc Natl Acad Sci U S A ; 116(20): 9837-9842, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31043568

RESUMEN

The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.


Asunto(s)
Evolución Biológica , Inmunoglobulinas , Invertebrados/genética , Sistema Nervioso , Animales , Dimerización , Drosophila melanogaster , Familia de Multigenes , Conformación Proteica
10.
Cell Rep ; 19(6): 1083-1090, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494858

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5' UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 5' , Factor de Transcripción Activador 4/genética , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Mol Biol Evol ; 33(12): 3161-3169, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27634871

RESUMEN

Studies in human and mouse have shown that decidual stromal cells (DSC), which develop in the innermost lining of uterus, mediate placentation by regulating maternal immune response against the fetus and the extent of fetal invasion. Investigating when and how DSC evolved is thus a key step to reconstructing the evolutionary history of mammalian pregnancy. We present molecular evidence placing the origin of DSC in the stem lineage of eutherians (extant placental mammals). The transcription factor forkhead box O1 (FOXO1) is a part of the core regulatory transcription factor complex (CoRC) that establishes the cell type identity of DSC. Decidualization, the process through which DSC differentiate from endometrial stromal fibroblasts, requires transcriptional upregulation of FOXO1 Contrary to other examples in mammals where gene recruitment is caused by the origin of an alternative promoter, FOXO1 is transcribed from the same promoter in DSC as in endometrial stromal fibroblasts. Comparing the activities of FOXO1 promoters from human, mouse, manatee (Afrotheria), and opossum (marsupial) revealed that FOXO1 promoter evolved responsiveness to decidualization signals in the stem lineage of eutherians. This eutherian vs. marsupial pattern of promoter activity was not observed in some other cell types expressing FOXO1, suggesting that this cis-regulatory evolution occurred specifically in the context of the origin of DSC. Sequence comparison revealed eutherian-specifically conserved nucleotides that contribute to the eutherian promoter activity. We conclude that the cis-regulatory activity of a terminal selector gene for decidual stromal cell identity evolved in the stem lineage of eutherians supporting a model where decidual cells are a eutherian innovation.


Asunto(s)
Decidua/fisiología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animales , Evolución Biológica , Decidua/citología , Decidua/metabolismo , Evolución Molecular , Femenino , Humanos , Ratones , Zarigüeyas , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Conejos , Selección Genética , Análisis de Secuencia de ADN , Células del Estroma/citología , Células del Estroma/metabolismo , Células del Estroma/fisiología , Trichechus
12.
Microb Cell Fact ; 11: 60, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22578275

RESUMEN

BACKGROUND: TliA is a thermostable lipase secreted by the type 1 secretion system (T1SS) of Pseudomonas fluorescens. The secretion is promoted by its secretion/chaperone domain located near the C-terminus, which is composed mainly of four Repeat-in-Toxin (RTX) repeats. In order to identify the minimal region of TliA responsible for its secretion, five different copies of the secretion/chaperone domain, each involving truncated N-terminal residues and a common C-terminus, were acquired and named as lipase ABC transporter recognition domains (LARDs). Each LARD was fused to epidermal growth factor (EGF) or green fluorescent protein (GFP), and the secretion of EGF-LARD or GFP-LARD fusion proteins was assessed in Escherichia coli with ABC transporter. RESULTS: Among the fusion proteins, GFP or EGF with 105-residue LARD3 was most efficiently secreted. In addition, GFP-LARD3 emitted wild type GFP fluorescence. Structurally, LARD3 had the 4 RTX repeats exposed at the N-terminus, while other LARDs had additional residues prior to them or missed some of the RTX repeats. LARD3 was both necessary and sufficient for efficient secretion and maintenance of GFP fluorescence in E. coli, which was also confirmed in P. fluorescens and P. fluorescens ▵tliA, a knock-out mutant of tliA. CONCLUSION: LARD3 was a potent secretion signal in T1SS for its fusion flanking RTX motif, which enhanced secretion and preserved the fluorescence of GFP. LARD3-mediated secretion in E. coli or P. fluorescens will enable the development of enhanced protein manufacturing factory and recombinant microbe secreting protein of interest in situ.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Lipasa/metabolismo , Pseudomonas fluorescens/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Lipasa/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Pseudomonas fluorescens/química , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA