Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14231, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952076

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aß accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.

2.
J Korean Med Sci ; 39(23): e179, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887200

RESUMEN

BACKGROUND: This study compared hearing outcomes with use of personal sound amplification products (PSAPs) and hearing aids (HAs) in patients with moderate to moderately severe unilateral hearing loss. METHODS: Thirty-nine participants were prospectively enrolled, and randomly assigned to use either one HA (basic or premium type) or one PSAP (basic or high-end type) for the first 8 weeks and then the other device for the following 8 weeks. Participants underwent a battery of examinations at three visits, including sound-field audiometry, word recognition score (WRS), speech perception in quiet and in noise, real-ear measurement, and self-report questionnaires. RESULTS: Functional gain was significantly higher with HAs across all frequencies (P < 0.001). While both PSAPs and HAs improved WRS from the unaided condition, HAs were superior to PSAPs. The speech recognition threshold in quiet conditions and signal-to-noise ratio in noisy conditions were significantly lower in the HA-aided condition than in the PSAP-aided condition, and in the PSAP-aided condition than in the unaided condition. Subjective satisfaction also favored HAs than PSAPs in questionnaires, Abbreviated Profile of Hearing Aid Benefit, International Outcome Inventory for Hearing Aids, and Host Institutional Questionnaire. CONCLUSION: While PSAPs provide some benefit for moderate to moderately severe unilateral hearing loss, HAs are more effective. This underscores the potential role of PSAPs as an accessible, affordable first-line intervention in hearing rehabilitation, particularly for individuals facing challenges in accessing conventional HAs.


Asunto(s)
Estudios Cruzados , Audífonos , Pérdida Auditiva Unilateral , Percepción del Habla , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Encuestas y Cuestionarios , Pérdida Auditiva Unilateral/rehabilitación , Anciano , Adulto , Satisfacción del Paciente , Ruido , Relación Señal-Ruido
3.
Aging Dis ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38739932

RESUMEN

The dynamic interaction between the brain and the skin is termed the 'skin-brain axis.' Changes in the skin not only reflect conditions in the brain but also exert direct and indirect effects on the brain. Interestingly, the connection between the skin and brain is crucial for understanding aging and neurodegenerative diseases. Several studies have shown an association between Alzheimer's disease (AD) and various skin disorders, such as psoriasis, bullous pemphigoid, and skin cancer. Previous studies have shown a significantly increased risk of new-onset AD in patients with psoriasis. In contrast, skin cancer may reduce the risk of developing AD. Accumulating evidence suggests an interaction between skin disease and AD; however, AD-associated pathological changes mediated by the skin-brain axis are not yet clearly defined. While some studies have reported on the diagnostic implications of the skin-brain axis in AD, few have discussed its potential therapeutic applications. In this review, we address the pathological changes mediated by the skin-brain axis in AD. Furthermore, we summarize (1) the diagnostic implications elucidated through the role of the skin-brain axis in AD and (2) the therapeutic implications for AD based on the skin-brain axis. Our review suggests that a potential therapeutic approach targeting the skin-brain axis will enable significant advances in the treatment of AD.

4.
Curr Med Chem ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38486385

RESUMEN

BACKGROUND: Traditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, Palmijihwanghwan, and Jowiseungchungtang have been commonly used to treat patients with Alzheimer's disease. However, only a few studies have investigated the effects of these five TOMs on tau pathology. OBJECTIVE: This study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation. METHODS: Immunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively. RESULTS: The five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. Hwanglyeonhaedoktang inhibited the aggregation of tau and promoted the dissociation of tau aggregates. Dangguijakyaksan and Hwanglyeonhaedoktang attenuated tau-induced neurotoxicity in HT22 cells. In addition, Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, and Palmijihwanghwan reduced tauinduced pro-inflammatory cytokine levels in BV2 cells. CONCLUSION: Our results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, Hwanglyeonhaedoktang showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that Hwanglyeonhaedoktang is suitable for treating AD patients with tau pathology.

5.
Int J Biol Macromol ; 263(Pt 2): 130516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423419

RESUMEN

Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aß) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aß deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Panax , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Panax/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
6.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398906

RESUMEN

This study investigates the effects of laser deposition and laser rescanning (LR) on the microstructure and mechanical properties of high-manganese steel (HMnS) deposited by laser-directed energy deposition (L-DED) comprising 24 wt.% Mn. Four types of laser deposition and LR strategies were investigated: unidirectional L-DED scanning without laser rescanning, L-DED scanning with 90° alterations in the laser scanning path on each layer without laser rescanning, unidirectional L-DED with laser rescanning in the same direction, and L-DED with laser rescanning with 90° alterations in the laser scanning path. The L-DED-processed HMnS had only a few small pores and exhibited a microstructure without any serious defects such as cracks. Additionally, a strong fibrous texture along the <101>/building direction of the fully austenite phase was found. The mechanical properties (microhardness and tensile strength) of HMnS were improved by the LR with a grain refinement effect and fine solidification cell size due to the significantly faster solidification rate in LR than that in L-DED.

7.
Biomed Pharmacother ; 172: 116226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301421

RESUMEN

Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-ß (Aß) and tau. Aß and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aß and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aß or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aß and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aß and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aß42 and tau K18. We verified the effect of neferine on Aß fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aß42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aß and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aß and tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Bencilisoquinolinas , Síndromes de Neurotoxicidad , Humanos , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Dispositivos Laboratorio en un Chip , Tecnología
8.
NPJ Sci Food ; 8(1): 13, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374073

RESUMEN

Numerous studies have explored the cultivation of muscle cells using non-animal materials for cultivated meat production. Achieving muscle cell proliferation and alignment using 3D scaffolds made from plant-based materials remains challenging. This study introduces a technique to culture and align muscle cells using only plant-based materials, avoiding toxic chemical modifications. Zein-alginate fibers (ZA fibers) were fabricated by coating zein protein onto alginate fibers (A fibers). Zein's excellent cell compatibility and biodegradability enable high cell adhesion and proliferation rates, and the good ductility of the ZA fibers enable a high strain rate (>75%). We demonstrate mature and aligned myotube formation in ZA fibers, providing a simple way to align muscle cells using plant-based materials. Additionally, cultivated meat was constructed by assembling muscle, fat, and vessel fibers. This method holds promise for the future mass production of cultivated meat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...