Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(27): 34892-34901, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949109

RESUMEN

There is a growing demand for research and development of advanced energy storage devices with high energy density utilizing earth-abundant metal anodes such as sodium metal. Tellurium, a member of the chalcogen group, stands out as a promising cathode material due to its remarkable volumetric capacity, comparable to sulfur, and significantly high electrical conductivity. However, critical issues arise from soluble sodium polytellurides, leading to the shuttle effect. This phenomenon can result in the loss of active materials, self-discharge, and anode instability. Here, we introduce polypyrrole-coated tellurium nanotubes as the cathode materials, where polypyrrole plays a crucial role in preventing the dissolution of polytellurides, as confirmed through operando optical microscopy. The polypyrrole-coated tellurium nanotubes exhibited an outstanding rate performance and long cycle stability in sodium-tellurium batteries. These research findings are anticipated to bolster the viability of polypyrrole-coated tellurium nanotubes as promising cathode materials, making a substantial contribution to the commercialization of sodium-ion battery technology.

2.
J Colloid Interface Sci ; 663: 566-576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428114

RESUMEN

Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.

3.
Chemosphere ; 352: 141233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266882

RESUMEN

Hydrogen production from water splitting combined with renewable electricity can provide a viable solution to the energy crisis. A novel MoS2/NiS2/Ni3S4 heterostructure is designed as a bifunctional electrocatalyst by facile hydrothermal method to demonstrate excellent electrocatalytic performance towards overall water splitting applications. MoS2/NiS2/Ni3S4 heterostructure necessitates a low overpotential of 81 mV and 210 mV to attain a current density of 10 mA cm-2 during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Consequently, the MoS2/NiS2/Ni3S4 heterostructure-based electrolyzer shows a low cell voltage of 1.54 V at 10 mA cm-2. The present work highlights the significance of the heterostructure configuration of transition metal sulfide-based electrocatalysts for electrochemical overall water splitting applications.


Asunto(s)
Electricidad , Molibdeno , Hidrógeno , Oxígeno , Sulfuros
4.
Carbohydr Res ; 534: 108980, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952447

RESUMEN

The polysaccharide fraction PNE-P1 was isolated from hot water extract (PNE) of the defatted meal of pine nuts (Pinus koraiensis) using DEAE-cellulose column chromatography. This fraction had three components of molecular masses 1251, 616, and 303 g/mol consisting mainly of arabinose, xylose, and galacturonic acid at a molar ratio of 2:1.6:1. Structural analysis with FTIR/Raman, methylation and GC-MS, and NMR revealed that PNE-P1 is a cell wall polysaccharide complex including arabinan, heteroxylan, homogalacturonan (HM) and rhamnogalacturonan I (RG-I) parts. Being nontoxic to RAW 264.7 macrophages in the concentration range of 10-200 µg/mL, PNE-P1 promoted proliferation of these cells, significantly induced the secretion of proinflammatory cytokines (TNF-α and IL-6) and chemokines (RANTES and MIP-1α) and enhanced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nitric oxide (NO). PNE-P1 also markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrate that pine nuts Pinus koraiensis contain a complex of water-soluble plant cell wall polysaccharides, which can stimulate innate immunity by potentiating macrophage function.


Asunto(s)
Nueces , Pinus , Nueces/química , Pinus/química , Polisacáridos/química , Cromatografía de Gases y Espectrometría de Masas , Xilosa
5.
ACS Appl Mater Interfaces ; 15(47): 54530-54538, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967340

RESUMEN

Sodium-ion capacitors (SICs) bridge the performance gaps between batteries and supercapacitors by providing a high energy and power density in a single configuration. As battery-type active materials, sodium preintercalated layered metal oxides are desirable owing to their unique crystal structure, simple synthesis process, and high working voltage. However, their poor cyclic stability and low kinetics limit their application. Herein, we report increased rate capability and cycle stability achieved by introducing transition metal substitution and surface coating strategies. By substituting a portion of Ni and Mn with Cu and Mg (the sample name was denoted as NMCM), the P2-O2 transition which occurs at high voltages was alleviated. Additionally, a thin and uniform sodium phosphate coating layer suppressed surface side reactions occurring during charge-discharge processes, as observed through ex-situ X-ray photoelectron spectroscopy and ex-situ transmission electron microscopy. Compared to the pristine sample, the capacity improved by 48% at a high current density of 4 A g-1. After 100 cycles, the sodium-phosphate-coated sample (NMCM@P) retained about 90% of its capacity, whereas NMCM had a capacity retention of 63%. When evaluating the longer stability of SIC full cells, NMCM@P exhibited an outstanding stability of 71% after 5000 cycles. This was higher than that of NMCM, which retained only 17% of its initial capacity.

6.
Cell Biol Toxicol ; 39(6): 3197-3217, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37603122

RESUMEN

Wnt signaling is a principal pathway regulating the essential activities of cell proliferation. Here, we investigated the effect of Wnt/ß-catenin signaling on in vivo drug-induced renal injury through the deletion of Dact2, a Wnt antagonist, and deciphered the underlying mechanism. Wild-type (WT) and Dact2 knockout (KO) mice were administered a single intraperitoneal injection of cisplatin to induce renal injury. The injury was alleviated in Dact2 KO mice, which showed lower levels of blood urea nitrogen and creatinine. RNA sequencing revealed 194 differentially expressed genes (DEGs) between WT and Dact2 KO mouse kidney before cisplatin treatment. Among them, higher levels of Igf1, one of the Wnt target genes responsible for "Positive regulation of cell proliferation" in KO mice, were confirmed along with the induction of Ki67 expression. In RNA-seq analysis comparing WT and Dact2 KO mice after cisplatin treatment, genes related to "Apoptosis" and "Activation of mitogen-activated protein kinase (MAPK) activity" were among the downregulated DEGs in KO mice. These results were corroborated in western blotting of proteins related to apoptosis and proapoptotic MAPK pathway; the expression of which was found to be lower in cisplatin-treated KO mice. Importantly, ß-catenin was found to directly bind to and regulate the transcription of Igf1, leading to the alleviation of cisplatin-induced cytotoxicity by the Wnt agonist, CHIR-99021. In addition, Igf1 knockdown accelerated cisplatin-induced cytotoxicity, accompanied by the MAPK upregulation. Our findings suggest that Dact2 knockout could protect cisplatin-induced nephrotoxicity by inhibiting apoptosis, possibly through the regulation of the Igf1-MAPK axis associated with Wnt/ß-catenin signaling.


Asunto(s)
Cisplatino , beta Catenina , Ratones , Animales , Cisplatino/farmacología , beta Catenina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Vía de Señalización Wnt , Apoptosis
7.
Foods ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37297447

RESUMEN

In this research, the potential anti-obesity efficacy of Lactobacillus rhamnosus BST-L.601 and its fermented product (named SPY) with mashed sweet potato paste were investigated using 3T3-L1 preadipocytes and high-fat diet (HD)-induced obese mice. SPY (0-0.5 mg/mL) dose-dependently and significantly reduced lipid accumulation and TG content and the expression of adipogenic markers (C/EBPα, PPAR-γ, and aP2) and fatty acid synthetic pathway proteins (ACC and FAS) in 3T3-L1 adipocytes, demonstrating that SPY suppresses adipocyte differentiation and lipogenesis. Oral administration of SPY (4 × 107 CFU/kg body weight) to HD-induced obese mice for 12 weeks significantly reduced the body and liver weight, the size of adipocytes, and the weight of epididymal, visceral, and subcutaneous fat tissues. SPY was more effective in decreasing body weight gain in HD mice than in treatment with BST-L.601 alone. Administration of SPY or BST-L.601 also reduced the serum level of total cholesterol and LDL cholesterol and leptin secretion at a similar level. These results revealed that both SPY and BST-L.601 effectively suppress HD-induced adipogenesis and lipogenesis, suggesting that these materials would be useful in the functional foods industry to ameliorate and/or prevent obesity.

8.
Food Chem Toxicol ; 174: 113695, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863560

RESUMEN

Gap junctional intercellular communication (GJIC) is composed of connexin (Cx) and plays an important role in maintaining intracellular homeostasis. Loss of GJIC is involved in the early stages of cancer pathways of non-genotoxic carcinogens; however, the effect of genotoxic carcinogens, including polycyclic aromatic hydrocarbons (PAHs), on GJIC function remains unclear. Therefore, we determined whether and how a representative PAH 7,12-dimethylbenz[a]anthracene (DMBA) suppresses GJIC in WB-F344 cells. First, DMBA significantly inhibited GJIC and dose-dependently reduced Cx43 protein and mRNA expression. In contrast, Cx43 promoter activity was upregulated after DMBA treatment via the induction of specificity protein 1 and hepatocyte nuclear factor 3ß, indicating that the promoter-independent loss of Cx43 mRNA can be associated with the inhibition of mRNA stability, which was verified by actinomycin D assay. In addition to a decrease in mRNA stability involved in human antigen R, we also observed DMBA-induced acceleration of Cx43 protein degradation, which was closely related to the loss of GJIC through Cx43 phosphorylation via MAPK activation. In conclusion, the genotoxic carcinogen DMBA suppresses GJIC by inhibiting post-transcriptional and post-translational processing of Cx43. Our findings suggest that the GJIC assay is an efficient short-term screening test for predicting the carcinogenic potential of genotoxic carcinogens.


Asunto(s)
Carcinógenos , Conexina 43 , Ratas , Animales , Humanos , Carcinógenos/metabolismo , Conexina 43/metabolismo , Ratas Endogámicas F344 , Hígado , Comunicación Celular , Uniones Comunicantes/metabolismo , Fosforilación , Antracenos/metabolismo , Antracenos/farmacología , ARN Mensajero/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834930

RESUMEN

Obesity-induced inflammation and insulin resistance are mediated by macrophage infiltration into adipose tissue. We investigated the effects of 7,8-dihydroxyflavone (7,8-DHF), a flavone found in plants, on the inflammatory response and insulin resistance induced by the interaction between adipocytes and macrophages. Hypertrophied 3T3-L1 adipocytes were cocultured with RAW 264.7 macrophages and treated with 7,8-DHF (3.12, 12.5, and 50 µM). The inflammatory cytokines and free fatty acid (FFA) release were evaluated by assay kits, and signaling pathways were determined by immunoblotting. Coculture of adipocytes and macrophages increased inflammatory mediators, such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) and FFA secretion but suppressed the production of anti-inflammatory adiponectin. 7,8-DHF counteracted the coculture-induced changes (p < 0.001). 7,8-DHF also inhibited c-Jun N-terminal kinase (JNK) activation and blocked nuclear factor kappa B (NF-κB) nuclear translocation in the coculture system (p < 0.01). In addition, adipocytes cocultured with macrophages did not increase glucose uptake and Akt phosphorylation in response to insulin. However, 7,8-DHF treatment recovered the impaired responsiveness to insulin (p < 0.01). These findings show that 7,8-DHF alleviates inflammation and adipocyte dysfunction in the coculture of hypertrophied 3T3-L1 adipocytes and RAW 264.7 macrophages, indicating its potential as a therapeutic agent for obesity-induced insulin resistance.


Asunto(s)
Adipocitos , Flavonas , Inflamación , Resistencia a la Insulina , Macrófagos , Animales , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Técnicas de Cocultivo , Inflamación/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Flavonas/metabolismo , Flavonas/farmacología , Comunicación Paracrina
10.
ACS Nano ; 17(3): 2554-2567, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688431

RESUMEN

Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Animales , Ratones , Oro/química , Nanopartículas del Metal/química , Neoplasias/diagnóstico por imagen , Espectrometría Raman/métodos , Diagnóstico por Imagen
11.
Plants (Basel) ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235350

RESUMEN

Particulate matters (PMs) from polluted air cause diverse pulmonary and cardiovascular diseases, including lung inflammation. While the fruits (Goji) of Lycium trees are commonly consumed as traditional medicine and functional food ingredients, the majority of their roots are discarded as by-products. To enhance the industrial applicability of Lycium roots, we prepared an ethanol extract (named GR30) of L. chinense Miller roots and evaluated its potential protective effects against particulate matter 10 (PM10)-induced inflammation and immune cell death. The GR30 treatment (0-500 µg/mL) significantly attenuated the PM10-induced cell cycle arrest, DNA fragmentation and mitochondria-dependent apoptosis in RBL-2H3 basophil cells. GR30 also significantly antagonized the PM10-induced expression of proinflammatory cytokines (IL-4, IL-13, and TNF-α) and COX2 expression through downregulation of MAPKs (ERK and JNK) signalling pathway. Oral administration of GR30 (200-400 mg/kg) to PM10 (20 mg/mL)-challenged mice significantly reduced the serum levels of IgE and the expression of TNF-α and Bax in lung tissues, which were elevated by PM10 exposure. These results revealed that the ethanolic extract (GR30) of L. chinense Miller roots exhibited anti-inflammatory and cyto-protective activity against PM10-induced inflammation and basophil cell death, and thus, it would be useful in functional food industries to ameliorate PM-mediated damage to respiratory and immune systems.

12.
Mar Biotechnol (NY) ; 24(4): 690-705, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35796894

RESUMEN

Excessive osteoclast differentiation and/or bone resorptive function causes a gradual loss of bone, leading to the pathogenesis of bone diseases such as osteoporosis (OP). In this study, a sulfated glucuronorhamnoxylan polysaccharide (designated SPS-CF) of the green alga Capsosiphon fulvescens was evaluated for anti-osteoporotic activity using osteoclastic cells differentiated from RAW264.7 macrophages by receptor activator of NF-κB ligand (RANKL) treatment and ovariectomized (OVX) female mice as a postmenopausal OP model. With negligible cytotoxicity, SPS-CF (50 µg/mL) significantly suppressed tartrate-resistant acid phosphatase (TRAP) activity, actin ring formation, and expression of matrix metalloproteinase 9 (MMP-9), cathepsin K, TRAF6, p-Pyk2, c-Cbl, c-Src, gelsolin, carbonic anhydrase II (CA II), and integrin ß3, indicating that SPS-CF inhibits the differentiation and bone resorptive function of osteoclasts. Removal of sulfate groups from SPS-CF abolished its anti-osteoclastogenic activities, demonstrating that sulfate groups are critical for its activity. Oral administration of SPS-CF (400 mg/kg/day) to OVX mice significantly augmented the bone mineral density (BMD) and serum osteoprotegerin (OPG)/RANKL ratio. These results demonstrated that SPS-CF exerts significant anti-osteoporotic activity by dampening osteoclastogenesis and bone resorption via downregulation of TRAF6-c-Src-Pyk2-c-Cbl-gelsolin signaling and augmentation of serum OPG/RANKL ratios in OVX mice, suggesting that SPS-CF can be a novel anti-osteoporotic compound for treating postmenopausal OP.


Asunto(s)
Resorción Ósea , Chlorophyta , Osteoporosis , Animales , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular , Chlorophyta/metabolismo , Femenino , Quinasa 2 de Adhesión Focal/metabolismo , Gelsolina/metabolismo , Ratones , FN-kappa B/metabolismo , Osteoporosis/tratamiento farmacológico , Sulfatos/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo
13.
Life Sci ; 300: 120495, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341826

RESUMEN

AIMS: Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer with a high mortality rate. Glycosylation of phenolic compounds may increase water-solubility and pharmacological activities and reduce the toxicity of aglycones. This study aimed to evaluate and compare the anticancer effect of aloe emodin 3-O-glucoside (AE3G) and its aglycone, aloe emodin (AE), against NSCLC. MAIN METHOD: A human adenocarcinoma cell line (A549) and other human non-small cell lung carcinoma cell lines (NCI-H460 cells and NCI-H1299 cells) and BALB/c nu/nu xenograft mice harbouring A549 cells were used as the NSCLC models. Inhibition of cell migration, disruption of mitochondrial membrane potential (MMP), DNA fragmentation, and expression levels of apoptotic proteins were measured by western blot, wound healing assay, JC-1 staining, or TUNEL staining. Histopathological changes in tumour tissues were observed by H&E and TUNEL staining. RESULTS: With no significant cytotoxicity against noncancerous cells (Vero cells), AE3G (5-50 µM) significantly and more effectively inhibited the growth, attachment, migration, Bcl-2 expression, and activation of MEK/ERK and Akt signalling proteins and induced cytochrome c release and Bax expression in A549 cells than AE. AE3G also significantly decreased the growth of other NSCLC cells, NCI-H460 cells and NCI-H1299 cells. AE3G suppressed the mRNA expression of matrix metalloproteinases, MMP2 and MMP9, and augmented the collapse of the mitochondrial MMP, cleavage of caspases (caspase 9, 8, and 3) and PARP, and DNA fragmentation. Intraperitoneal injection of AE3G (13 and 26 mg/kg/day) reduced the tumour volume and weight and induced apoptotic cell death in tumour tissues of xenograft NSCLC mice. SIGNIFICANCE: The present study demonstrated that AE3G significantly and more effectively diminished human NSCLC cell growth and migration by triggering mitochondria-dependent intrinsic apoptosis than AE, providing AE3G as a new potent candidate to prevent or treat human NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Emodina , Neoplasias Pulmonares , Animales , Antraquinonas , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Emodina/farmacología , Glucósidos/farmacología , Glucósidos/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Células Vero
14.
Life Sci ; 287: 120131, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34767806

RESUMEN

AIMS: Potential anti-obesity effects of quinizarin, a plant anthraquinone, were investigated using 3 T3-L1 preadipocyte cells and high-fat diet (HD)-induced obese mice. MAIN METHOD: Cell viability was determined using the MTT assay. Triglyceride (TG) and lipid accumulation were determined using a TG assay kit and Oil Red O staining, respectively. Adipogenic, lipogenic, and lipolytic gene and protein expression was measured by RT-PCR or Western blot. Serum biochemical indices, including cholesterol and blood glucose, in HD-fed obese mice were determined using corresponding assay kits. Histological analysis was performed with haematoxylin and eosin (H&E) staining. RESULTS: Quinizarin (0-10 µM) significantly reduced intracellular TG and lipid droplets during the differentiation of preadipocytes. Quinizarin significantly suppressed the expression of adipocyte differentiation marker proteins, such as CCAAT/enhancer-binding protein ß (C/EBP-ß), C/EBP-α, PPAR-γ, and aP2, and lipogenic marker proteins, including SREBP1c, SREBP2, fatty acid synthase (FAS), and acetyl-CoA carboxylase 1 (ACC1), reduced ACC2 expression and increased carnitine palmitoyltransferase 1 (CPT1) expression. Oral administration of quinizarin (15-30 mg/kg/day) to HD-fed mice for 6 weeks reduced the body weight gain and size of liver adipocytes and epididymal fat tissues, with significant reductions in liver TG and serum total cholesterol, blood glucose, LDL, and HDL levels. SIGNIFICANCE: The results of this study indicated that quinizarin exerts anti-obesity effects by inhibiting both adipogenesis and lipogenesis and stimulating lipolysis in vitro and in vivo mainly by downregulating the SREBP signalling pathway; thus, it might be a potent candidate as a health-beneficial food or therapeutic agent to prevent or treat obesity.


Asunto(s)
Adipocitos/metabolismo , Antraquinonas/farmacología , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Diferenciación Celular/fisiología , Lipogénesis/fisiología , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
15.
Life Sci ; 270: 119074, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497739

RESUMEN

AIM: Due to on-going safety concerns or lack of efficacy of currently used medications for the treatment of osteoporosis (OP), identifying new therapeutic agents is an important part of research. In the present study, potential anti-osteoporotic activity of a natural flavonoid glycoside, trilobatin (phloretin 4-O-glucoside, Tri) was evaluated. MATERIAL AND METHODS: Osteoclastic cells were established by treating the RAW264.7 macrophage cells with RANKL and ovariectomized (OVX) C57BL/6 female mice were used as an animal model of postmenopausal OP. Actin ring formation, expression levels of osteoclastogenic marker genes and bone resorptive proteins were measured by RT-PCR, western blot, or fluorometric assays. Bone mineral density (BMD) was determined by pDEXA densitometric measurement and serum osteoprotegerin (OPG) and RANKL were measured by ELISA. KEY FINDING: Tri (5-20 µM) significantly inhibited osteoclast formation and actin ring formation in RANKL-induced osteoclasts. Tri attenuated expression of osteoclastogenic genes (MMP-9 and cathepsin K), bone resorptive proteins (CA II and integrin ß3), and osteoclastogenic signalling proteins (TRAF6, p-Pyk2, c-Cbl, and c-Src). Oral administration of Tri to OVX mice augmented BMD and serum OPG/RANKL ratio. Interestingly, while Tri and phloretin aglycone (Phl) showed similar levels of in vitro anti-osteoclastogenic activity, Tri more potently ameliorated bone loss than Phl in OVX mice. SIGNIFICANCE: This study demonstrated that Tri inhibits osteoclastic cell differentiation and bone resorption by down-regulating the expression of osteoclastogenic marker genes and signalling proteins, bone resorptive proteins, and by augmenting serum OPG/RANKL ratio, suggesting that Tri can be a novel anti-osteoporotic compound for treating senile and postmenopausal OP.


Asunto(s)
Flavonoides/farmacología , Osteoporosis/tratamiento farmacológico , Polifenoles/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Flavonoides/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos , Osteogénesis/efectos de los fármacos , Polifenoles/metabolismo , Células RAW 264.7
16.
J Control Release ; 330: 1-14, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321157

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of lung cancer-related deaths worldwide. Tumor-associated macrophages (TAMs), which can be polarized into tumor-promoting M2 phenotype, overexpress folate receptor beta (FRß) and are associated with poor prognosis in NSCLC. In addition, calpain-2 (CAPN2) is overexpressed in NSCLC and is involved in tumor growth. To improve the anticancer efficacy of drugs and reduce their side effects in the treatment of NSCLC, it is important to develop smart drug delivery systems with specific targeting ability and controlled release mechanisms. In this study, FRß-targeted pH-sensitive liposomes were designed as carriers to ensure efficient drug delivery and acid-responsive release in NSCLC cells. Folate-mediated targeting of FRß in M2 TAMs and NSCLC cells effectively inhibited tumor growth and the stimulus-responsive drug release reduced the toxic side effects of the drug. The combination of doxycycline (anti-CAPN2) and docetaxel (anticancer drug) showed a synergistic inhibitory effect on tumor growth by suppressing CAPN2 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptor 2 de Folato , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico
17.
Int Immunopharmacol ; 88: 106936, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32871479

RESUMEN

Emodin (Emo) is a natural plant anthraquinone derivative with a wide spectrum of pharmacological properties, including anticancer, antioxidant, and hepatoprotective activities. Glycosylation of natural anthraquinones with various sugar moieties can affect their physical, chemical, and biological functions. In this study, the potential immunomodulatory activities of Emo and its glycosylated derivative, emodin 8-O-glucoside (E8G), were evaluated and compared using murine macrophage RAW264.7 cells and human monocytic THP-1 cells. The results showed that E8G (20 µM) induced the secretion of TNF-α and IL-6 from RAW264.7 cells more effectively than unglycosylated Emo aglycone, by 4.9- and 1.6-fold, respectively, with no significant cytotoxicity in the concentration range tested (up to 20 µM). E8G (2.5-20 µM) significantly and dose-dependently induced inducible nitric oxide synthase (iNOS) expression by up to 3.2-fold compared to that of untreated control following a remarkable increase in nitric oxide (NO) production. E8G also significantly increased the expression of TLR-2 mRNA and the phosphorylation of MAPKs (JNK and p38). The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with E8G (2.5-20 µM). Moreover, E8G markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrated that E8G far more strongly stimulates the secretion of proinflammatory cytokines, such as TNF-α and IL-6, and NO production from macrophages through upregulation of the TLR-2/MAPK/NF-κB signalling pathway than its nonglycosylated form, Emo aglycone. These results suggest for the first time that E8G may represent a novel immunomodulator, enhancing the early innate immunity.


Asunto(s)
Antraquinonas/farmacología , Glucósidos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Células Jurkat , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Fagocitosis/efectos de los fármacos , Células RAW 264.7 , Células THP-1 , Receptor Toll-Like 2/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Pharmaceutics ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599712

RESUMEN

ErbB2 is a type of receptor tyrosine kinase, which is known to be involved in tumorigenesis, tumor aggressiveness, and clinical outcome. ErbB2-targeting therapy using therapeutic antibodies has been successful in breast cancer treatment. However, the need for repeated treatments and the high cost are major disadvantages with monoclonal antibody therapies. Compared with antibodies, peptides are cheap, relatively stable, and have low immunogenicity. We have developed a highly specific cancer-targeting drug delivery system using a targeting peptide to maximize the therapeutic efficiency of rapamycin and to help prevent drug resistance in ErbB2-positive breast cancer. Physicochemical characterization confirmed the successful construction of ErbB2-targeting liposomes (ErbB2Lipo). A comparison of a scrambled peptide (ScrErbB2) with the ErbB2-targeting peptide confirmed that these peptides had similar properties except for the targeting ability. The ErbB2Lipo exhibited higher delivery efficiency in ErbB2 positive BT-474 cells than non-targeting liposomes conjugated with ScrErbB2 (ScrErbB2Lipo). This peptide-targeting strategy has the potential to improve the efficacy of chemotherapy in ErbB2-positive cancers.

19.
J Ind Microbiol Biotechnol ; 47(6-7): 537-542, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32588231

RESUMEN

Alizarin has been reported to have an antigenotoxic activity along with an inhibitory effect on the tumor cell growth of human colon carcinoma cells. Alizarin was biotransformed into an O-methoxide derivative using O-methyltransferase from Streptomyces avermitilis MA4680 (SaOMT2) to enhance its bioefficacy. The biotransformed product was extracted, purified, and characterized using various chromatographic and spectroscopic analyses, and confirmed to be an alizarin 2-O-methoxide. The antiproliferative activity of the compound against gastric cancer cells (AGS), uterine cervical cancer (Hela), liver cancer (HepG2), and normal cell lines was investigated. Alizarin 2-O-methoxide showed an inhibitory effect on all three cancer-cell lines at very low concentrations, from 0.078 µM, with no cytotoxicity against 267B1 (human prostate epithelial) and MRC-5 (normal human fetal lung fibroblast).


Asunto(s)
Antraquinonas/metabolismo , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias/patología , Streptomyces/enzimología , Biotransformación , Línea Celular Tumoral , Escherichia coli , Células HeLa , Células Hep G2 , Humanos , Microbiología Industrial , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Neoplasias/tratamiento farmacológico
20.
Artículo en Inglés | MEDLINE | ID: mdl-32373598

RESUMEN

Elucidation of upconversion nanoparticles (UCNPs) that can be excited by near-infrared (NIR) light is an interesting topic in the field of photodynamic therapy (PDT). However, the PDT efficiency of conventional UCNPs is limited due to the low quantum yield and overheating effect of the 980 nm light source. In this study, a light source with a wavelength of 808 nm was used as an excitation source for Nd-doped UCNPs to solve the overheating effect. UCNPs with a core@shell structure (NaYF4:Yb,Er,Nd@NaYF4:Yb,Nd) were synthesized to increase the upconversion emission efficiency. Dual-color emitting Er-doped UCNPs and dual photosensitizers (Chlorin e6 and Rose Bengal) were used for enhanced PDT. Each photosensitizer could absorb red and green emissions of the UCNPs to generate reactive oxygen species (ROS), respectively. The ROS generation in a dual photosensitizer system is significantly higher than that in a single photosensitizer system. Additionally, PDT induces immunogenic apoptosis. In this study, by utilizing a highly efficient PDT agent, PDT-induced apoptosis was studied by biomarker analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...