Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 344: 123295, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184152

RESUMEN

Soils and dusts can act as sinks for semivolatile lipophilic organic compounds and children ingest relatively large amounts of both soils and dusts. Following intake, sorbed chemicals may desorb (mobilize) and become available for intestinal absorption (bioaccessible). When chemicals are not degraded in the digestive tract, mobilization can approximate bioaccessibility. Alternatively, when gastrointestinal degradation of mobilized chemicals does occur, it can be useful to separate mobilization from bioaccessibility. In this study we used synthetic digestive fluids in a sequential, three-compartment (saliva, gastric, and intestinal) in vitro assay to construct mobilization and bioaccessibility models for 16 pesticides (log Kow 2.5-6.8) sorbed to 32 characterized soils and house dusts. To address the potential loss of mobilized pesticides due to absorption, the assays were repeated using a solid phase sorbent (tenax) added to the digestive fluid immediately after addition of the intestinal fluid components. We found that pesticide mobilization was predicted by pesticide log Kow and the carbon content of the soils and dusts. Pesticide loss measurably reduced the bioaccessibility of most pesticides, and bioaccessibility was largely predicted by log Kow and pesticide loss rate constants. Introduction of the sink increased mobilization by x̄ = 4 ± 6% (soil) and x̄ = 9 ± 7% (dust) while bioaccessibility increases were x̄ = 41 ± 21% (soil) and x̄ = 24 ± 12% (dust). The physicochemical properties of the soils, dusts, and pesticides used in this study successfully predicted the in vitro mobilization and bioaccessibility of the pesticides. This suggests that modeling of pesticide mobilization and bioaccessibility could reduce uncertainty in exposure and risk assessments.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Niño , Humanos , Polvo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Ingestión de Alimentos , Disponibilidad Biológica
2.
Toxicol Sci ; 197(1): 95-103, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37740396

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are regularly found in soils and dusts, both of which can be consumed by children at relatively high amounts. However, there is little data available to model the bioaccessibility of PFAS in soils and dusts when consumed or to describe how the physiochemical properties of PFAS and soils/dusts might affect bioaccessibility of these chemicals. Because bioaccessibility is an important consideration in estimating absorbed dose for exposure and risk assessments, in the current study, in vitro assays were used to determine bioaccessibility of 14 PFAS in 33 sets of soils and dusts. Bioaccessibility assays were conducted with and without a sink, which was used to account for the removal of PFAS due to their movement across the human intestine. Multiple linear regression with backward elimination showed that a segmented model using PFAS chain length, number of branches, and percent total organic carbon explained 78.0%-88.9% of the variability in PFAS bioaccessibility. In general, PFAS had significantly greater bioaccessibility in soils relative to dusts and the addition of a sink increased bioaccessibility in the test system by as much as 10.8% for soils and 20.3% for dusts. The results from this study indicate that PFAS bioaccessibility in soils and dusts can be predicted using a limited set of physical chemical characteristics and could be used to inform risk assessment models.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Niño , Humanos , Polvo/análisis , Contaminantes del Suelo/toxicidad , Suelo/química , Disponibilidad Biológica , Ingestión de Alimentos
3.
Environ Sci Technol ; 56(22): 15470-15477, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36265138

RESUMEN

Anion-exchange (AE) sorbents are gaining in popularity for the remediation of anionic per- and polyfluoroalkyl substances (PFAS) in water. However, it is unclear how hydrophobic and electrostatic interactions contribute to anionic PFAS retention. The goal of this study was to understand the effects of PFAS chain length and head group on electrostatic interactions between PFAS and an aminopropyl AE phase. Liquid chromatography-mass spectrometry (LC-MS) was used with an aminopropyl AE guard column to find relative retention times. The average electrostatic potential (EPavg) of each PFAS was calculated, which correlated positively with the PFAS chromatographic retention time, demonstrating the value of EPavg as a proxy for predicting electrostatic interactions between PFAS and the aminopropyl AE phase. The order of greatest to lowest PFAS AE affinity for an aminopropyl column based on chromatographic retention times and electrostatic interactions was n:3 fluorotelomer carboxylic acids (n:3 FtAs) > n:2 fluorotelomer carboxylic acids (n:2 FtAs) > perfluoroalkyl carboxylates (PFCAs) > perfluoroalkyl sulfonamides (FASAs) ∼ n:2 fluorotelomer sulfonates (n:2 FtSs) > perfluoroalkyl sulfonates (PFSAs). This study introduces a methodology for qualitatively characterizing electrostatic interactions between PFAS and AE phases and highlights that electrostatic interactions alone cannot explain the affinity of PFAS for AE resins in water treatment/remediation scenarios.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos/análisis , Aniones
4.
Pharmacol Ther ; 225: 107837, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753133

RESUMEN

Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.


Asunto(s)
Vapeo , Química , Humanos , Toxicología , Vapeo/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...