Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Nat Commun ; 15(1): 2130, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503739

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ligandos , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética
2.
Biochem J ; 480(24): 2037-2044, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38100320

RESUMEN

Atypical protein kinase Cs (aPKCs) are part of the PKC family of protein kinases and are atypical because they don't respond to the canonical PKC activators diacylglycerol (DAG) and Ca2+. They are central to the organization of polarized cells and are deregulated in several cancers. aPKC recruitment to the plasma membrane compartment is crucial to their encounter with substrates associated with polarizing functions. However, in contrast with other PKCs, the mechanism by which atypical PKCs are recruited there has remained elusive until recently. Here, we bring aPKC into the fold, summarizing recent reports on the direct recruitment of aPKC to membranes, providing insight into seemingly discrepant findings and integrating them with existing literature.


Asunto(s)
Proteína Quinasa C , Proteína Quinasa C/metabolismo , Membrana Celular/metabolismo
3.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37955972

RESUMEN

DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Inhibidores de Topoisomerasa II , Proteínas de Ciclo Celular/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Inhibidores de Topoisomerasa II/farmacología
4.
Biochem J ; 480(18): 1475-1478, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37732645
5.
J Biol Chem ; 299(7): 104847, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211093

RESUMEN

Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial ß-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.


Asunto(s)
Membrana Celular , Proteína Quinasa C , Procesamiento Proteico-Postraduccional , Membrana Celular/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Tirosina/metabolismo , Humanos , Células HEK293 , Unión Proteica , Mutación , Polaridad Celular/fisiología
6.
Mol Cell Proteomics ; 22(4): 100522, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863607

RESUMEN

PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.


Asunto(s)
Proteína Quinasa C-epsilon , Transducción de Señal , Ratones , Animales , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Etanol , Consumo de Bebidas Alcohólicas/genética , Encéfalo/metabolismo
7.
J Clin Oncol ; 41(14): 2561-2570, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821809

RESUMEN

PURPOSE: In many cancers, the expression of immunomodulatory ligands leads to immunoevasion, as exemplified by the interaction of PD-L1 with PD-1 on tumor-infiltrating lymphocytes. Profound advances in cancer treatments have come with the advent of immunotherapies directed at blocking these immuno-suppressive ligand-receptor interactions. However, although there has been success in the use of these immune checkpoint interventions, correct patient stratification for these therapies has been challenging. MATERIALS AND METHODS: To address this issue of patient stratification, we have quantified the intercellular PD-1/PD-L1 interaction in formalin-fixed paraffin-embedded tumor samples from patients with non-small cell lung carcinoma, using a high-throughput automated quantitative imaging platform (quantitative functional proteomics [QF-Pro]). RESULTS: The multisite blinded analysis across a cohort of 188 immune checkpoint inhibitor-treated patients demonstrated the intra- and intertumoral heterogeneity of PD-1/PD-L1 immune checkpoint engagement and notably showed no correlation between the extent of PD-1/PD-L1 interaction and PD-L1 expression. Importantly, PD-L1 expression scores used clinically to stratify patients correlated poorly with overall survival; by contrast, patients showing a high PD-1/PD-L1 interaction had significantly better responses to anti-PD-1/PD-L1 treatments, as evidenced by increased overall survival. This relationship was particularly strong in the setting of first-line treatments. CONCLUSION: The functional readout of PD-1/PD-L1 interaction as a predictive biomarker for the stratification of patients with non-small-cell lung carcinoma, combined with PD-L1 expression, should significantly improve the response rates to immunotherapy. This would both capture patients excluded from checkpoint immunotherapy (high PD-1/PD-L1 interaction but low PD-L1 expression, 24% of patients) and additionally avoid treating patients who despite their high PD-L1 expression do not respond and suffer from side effects.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia/métodos , Antígeno B7-H1
8.
Biochem J ; 479(13): 1467-1486, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730579

RESUMEN

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.


Asunto(s)
Cardiomiopatías , Hipertensión , Proteína Quinasa C/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Femenino , Hipertensión/metabolismo , Hipertensión/patología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Embarazo
9.
Sci Signal ; 15(728): eabj6915, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380879

RESUMEN

The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Sistema de Señalización de MAP Quinasas , Animales , Candida albicans/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Ratones , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Cancer Res ; 82(9): 1762-1773, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35247890

RESUMEN

Topoisomerase 2a (Topo2a)-dependent G2 arrest engenders faithful segregation of sister chromatids, yet in certain tumor cell lines where this arrest is dysfunctional, a PKCε-dependent failsafe pathway can be triggered. Here we elaborate on recent advances in understanding the underlying mechanisms associated with this G2 arrest by determining that p53-p21 signaling is essential for efficient arrest in cell lines, in patient-derived cells, and in colorectal cancer organoids. Regulation of this p53 axis required the SMC5/6 complex, which is distinct from the p53 pathways observed in the DNA damage response. Topo2a inhibition specifically during S phase did not trigger G2 arrest despite affecting completion of DNA replication. Moreover, in cancer cells reliant upon the alternative lengthening of telomeres (ALT) mechanism, a distinct form of Topo2a-dependent, p53-independent G2 arrest was found to be mediated by BLM and Chk1. Importantly, the previously described PKCε-dependent mitotic failsafe was engaged in hTERT-positive cells when Topo2a-dependent G2 arrest was dysfunctional and where p53 was absent, but not in cells dependent on the ALT mechanism. In PKCε knockout mice, p53 deletion elicited tumors were less aggressive than in PKCε-replete animals and exhibited a distinct pattern of chromosomal rearrangements. This evidence suggests the potential of exploiting synthetic lethality in arrest-defective hTERT-positive tumors through PKCε-directed therapeutic intervention. SIGNIFICANCE: The identification of a requirement for p53 in stringent Topo2a-dependent G2 arrest and engagement of PKCε failsafe pathways in arrest-defective hTERT-positive cells provides a therapeutic opportunity to induce selective synthetic lethality.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Neoplasias , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteína p53 Supresora de Tumor , Animales , Línea Celular Tumoral , Daño del ADN , Humanos , Ratones , Neoplasias/genética , Fase S , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
12.
Nat Commun ; 12(1): 6934, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836941

RESUMEN

The PKCε-regulated genome protective pathway provides transformed cells a failsafe to successfully complete mitosis. Despite the necessary role for Aurora B in this programme, it is unclear whether its requirement is sufficient or if other PKCε cell cycle targets are involved. To address this, we developed a trapping strategy using UV-photocrosslinkable amino acids encoded in the PKCε kinase domain. The validation of the mRNA binding protein SERBP1 as a PKCε substrate revealed a series of mitotic events controlled by the catalytic form of PKCε. PKCε represses protein translation, altering SERBP1 binding to the 40 S ribosomal subunit and promoting the assembly of ribonucleoprotein granules containing SERBP1, termed M-bodies. Independent of Aurora B, SERBP1 is shown to be necessary for chromosome segregation and successful cell division, correlating with M-body formation. This requirement for SERBP1 demonstrates that Aurora B acts in concert with translational regulation in the PKCε-controlled pathway exerting genome protection.


Asunto(s)
Segregación Cromosómica , Mitosis , Biosíntesis de Proteínas , Proteína Quinasa C-epsilon/metabolismo , Proteínas de Unión al ARN/metabolismo , Aurora Quinasa B/metabolismo , Células HEK293 , Células HeLa , Humanos
13.
Gastroenterology ; 161(4): 1179-1193, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197832

RESUMEN

BACKGROUND & AIMS: Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. METHODS: We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. RESULTS: In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. CONCLUSIONS: Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fenómenos Inmunogenéticos , Inmunogenética , Nivolumab/uso terapéutico , Microambiente Tumoral , Anticuerpos Monoclonales Humanizados/efectos adversos , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Citotoxicidad Inmunológica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Nivolumab/efectos adversos , Valor Predictivo de las Pruebas , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Reproducibilidad de los Resultados , Factores de Tiempo , Transcriptoma , Resultado del Tratamiento , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Secuenciación del Exoma
14.
Biochem J ; 478(12): 2247-2263, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34143863

RESUMEN

A requirement for PKCε in exiting from the Aurora B dependent abscission checkpoint is associated with events at the midbody, however, the recruitment, retention and action of PKCε in this compartment are poorly understood. Here, the prerequisite for 14-3-3 complex assembly in this pathway is directly linked to the phosphorylation of Aurora B S227 at the midbody. However, while essential for PKCε control of Aurora B, 14-3-3 association is shown to be unnecessary for the activity-dependent enrichment of PKCε at the midbody. This localisation is demonstrated to be an autonomous property of the inactive PKCε D532N mutant, consistent with activity-dependent dissociation. The C1A and C1B domains are necessary for this localisation, while the C2 domain and inter-C1 domain (IC1D) are necessary for retention at the midbody. Furthermore, it is shown that while the IC1D mutant retains 14-3-3 complex proficiency, it does not support Aurora B phosphorylation, nor rescues division failure observed with knockdown of endogenous PKCε. It is concluded that the concerted action of multiple independent events facilitates PKCε phosphorylation of Aurora B at the midbody to control exit from the abscission checkpoint.


Asunto(s)
Proteínas 14-3-3/metabolismo , Aurora Quinasa B/metabolismo , Citocinesis , Proteína Quinasa C-epsilon/metabolismo , Proteínas 14-3-3/genética , Aurora Quinasa B/genética , Células HEK293 , Humanos , Fosforilación , Proteína Quinasa C-epsilon/genética , Transducción de Señal , Huso Acromático
15.
Elife ; 102021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33929322

RESUMEN

High-dimensional cytometry is an innovative tool for immune monitoring in health and disease, and it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here, we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a nonspecialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: (1) data import and quality control; (2) dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all contained within an R-based open-source framework.


Asunto(s)
Alergia e Inmunología , Biología Computacional/métodos , Citometría de Flujo/métodos , Algoritmos , Linfocitos B/citología , Linfocitos B/inmunología , Análisis de Datos , Humanos
16.
Br J Cancer ; 124(10): 1618-1620, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723395
17.
Nat Rev Cancer ; 21(1): 51-63, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33177705

RESUMEN

The maturing mutational landscape of cancer genomes, the development and application of clinical interventions and evolving insights into tumour-associated functions reveal unexpected features of the protein kinase C (PKC) family of serine/threonine protein kinases. These advances include recent work showing gain or loss-of-function mutations relating to driver or bystander roles, how conformational constraints and plasticity impact this class of proteins and how emergent cancer-associated properties may offer opportunities for intervention. The profound impact of the tumour microenvironment, reflected in the efficacy of immune checkpoint interventions, further prompts to incorporate PKC family actions and interventions in this ecosystem, informed by insights into the control of stromal and immune cell functions. Drugging PKC isoforms has offered much promise, but when and how is not obvious.


Asunto(s)
Neoplasias/enzimología , Proteína Quinasa C/fisiología , Animales , Humanos , Isoenzimas/fisiología , Mutación , Fosforilación , Regiones Promotoras Genéticas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Microambiente Tumoral
18.
Adv Biol Regul ; 78: 100759, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33039823

RESUMEN

Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.


Asunto(s)
Genómica , Neoplasias/genética , Proteína Quinasa C-epsilon/metabolismo , Proliferación Celular , Humanos , Neoplasias/enzimología , Neoplasias/patología
19.
Biochem J ; 477(17): 3329-3347, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32815546

RESUMEN

Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor ErbB-3 , Regulación Alostérica , Animales , Células CHO , Cricetulus , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Prueba de Estudio Conceptual , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/química , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
20.
Cancer Res ; 80(19): 4244-4257, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32855204

RESUMEN

Many cancers are termed immunoevasive due to expression of immunomodulatory ligands. Programmed death ligand-1 (PD-L1) and cluster of differentiation 80/86 (CD80/86) interact with their receptors, programmed death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), respectively, on tumor-infiltrating leukocytes eliciting immunosuppression. Immunotherapies aimed at blocking these interactions are revolutionizing cancer treatments, albeit in an inadequately described patient subset. To address the issue of patient stratification for immune checkpoint intervention, we quantitatively imaged PD-1/PD-L1 interactions in tumor samples from patients, employing an assay that readily detects these intercellular protein-protein interactions in the less than or equal to 10 nm range. These analyses across multiple patient cohorts demonstrated the intercancer, interpatient, and intratumoral heterogeneity of interacting immune checkpoints. The PD-1/PD-L1 interaction was not correlated with clinical PD-L1 expression scores in malignant melanoma. Crucially, among anti-PD-1-treated patients with metastatic non-small cell lung cancer, those with lower PD-1/PD-L1 interaction had significantly worsened survival. It is surmised that within tumors selecting for an elevated level of PD-1/PD-L1 interaction, there is a greater dependence on this pathway for immune evasion and hence, they exhibit more impressive patient response to intervention. SIGNIFICANCE: Quantitation of immune checkpoint interaction by direct imaging demonstrates that immunotherapy-treated patients with metastatic NSCLC with a low extent of PD-1/PD-L1 interaction show significantly worse outcome.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Células Renales/inmunología , Neoplasias Renales/inmunología , Neoplasias Pulmonares/inmunología , Melanoma/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Adulto , Anciano , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Femenino , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/mortalidad , Persona de Mediana Edad , Terapia Molecular Dirigida , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Reproducibilidad de los Resultados , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...