Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(12): 1591-1606, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751998

RESUMEN

Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.


Asunto(s)
Aldehído Oxidasa , Hígado , Humanos , Aldehído Oxidasa/metabolismo , Tasa de Depuración Metabólica , Hígado/metabolismo , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo
2.
Toxicol Appl Pharmacol ; 465: 116456, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918128

RESUMEN

The blood-brain barrier (BBB) protects the brain from toxins but hinders the penetration of neurotherapeutic drugs. Therefore, the blood-to-brain permeability of chemotherapeutics must be carefully evaluated. Here, we aimed to establish a workflow to generate primary cultures of human brain microvascular endothelial cells (BMVECs) to study drug brain permeability and bioavailability. Furthermore, we characterized and validated this BBB model in terms of quantitative expression of junction and drug-transport proteins, and drug permeability. We isolated brain microvessels (MVs) and cultured BMVECs from glioma patient biopsies. Then, we employed targeted LC-MS proteomics for absolute protein quantification and immunostaining to characterize protein localization and radiolabeled drugs to predict drug behavior at the Human BBB. The abundance levels of ABC transporters, junction proteins, and cell markers in the cultured BMVECs were similar to the MVs and correctly localized to the cell membrane. Permeability values (entrance and exit) and efflux ratios tested in vitro using the primary BMVECs were within the expected in vivo values. They correctly reflected the transport mechanism for 20 drugs (carbamazepine, diazepam, imipramine, ketoprofen, paracetamol, propranolol, sulfasalazine, terbutaline, warfarin, cimetidine, ciprofloxacin, digoxin, indinavir, methotrexate, ofloxacin, azidothymidine (AZT), indomethacin, verapamil, quinidine, and prazosin). We established a human primary in vitro model suitable for studying blood-to-brain drug permeability with a characterized quantitative abundance of transport and junction proteins, and drug permeability profiles, mimicking the human BBB. Our results indicate that this approach could be employed to generate patient-specific BMVEC cultures to evaluate BBB drug permeability and develop personalized therapeutic strategies.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Proteómica , Transportadoras de Casetes de Unión a ATP/metabolismo , Permeabilidad
3.
Biopharm Drug Dispos ; 43(6): 265-271, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36195987

RESUMEN

HepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport, and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity. For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were reincubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed us to objectivize and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free reincubation period of HepaRG cells, that is, the efflux period, indicated that a 20 min-efflux period allowed reaching biliary and sinusoidal excretion indexes for TC around 80% and 60%, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide, or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the noncholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting drug-induced liver toxicity (DILI) due to the inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Ácido Taurocólico/farmacología , Ácido Taurocólico/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ácidos y Sales Biliares/farmacología , Ácidos y Sales Biliares/metabolismo
4.
Fluids Barriers CNS ; 19(1): 41, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658915

RESUMEN

Endothelial cells (ECs) are constantly submitted in vivo to hemodynamical forces derived from the blood circulation, including shear stress (SS). ECs are able to detect SS and consequently adapt their phenotype, thus affecting many endothelial functions. If a plethora of shear stress-regulated molecular networks have been described in peripheral ECs, less is known about the molecular responses of microvascular brain ECs which constitute the blood-brain barrier (BBB). In this work, we investigated the response of human cerebral microvascular ECs to laminar physiological shear stress using the well characterized hCMEC/D3 cell line. Interestingly, we showed that hCMEC/D3 cells responded to shear stress by aligning perpendicularly to the flow direction, contrary to peripheral endothelial cells which aligned in the flow direction. Whole proteomic profiles were compared between hCMEC/D3 cells cultured either in static condition or under 5 or 10 dyn.cm-2 SS for 3 days. 3592 proteins were identified and expression levels were significantly affected for 3% of them upon both SS conditions. Pathway analyses were performed which revealed that most proteins overexpressed by SS refer to the antioxidant defense, probably mediated by activation of the NRF2 transcriptional factor. Regarding down-regulated proteins, most of them participate to the pro-inflammatory response, cell motility and proliferation. These findings confirm the induction of EC quiescence by laminar physiological SS and reveal a strong protective effect of SS on hCMEC/D3 cells, suggesting a similar effect on the BBB. Our results also showed that SS did not significantly increase expression levels nor did it affect the localization of junctional proteins and did not afect either the functional activity of several ABC transporters (P-glycoprotein and MRPs). This work provides new insights on the response of microvascular brain ECs to SS and on the importance of SS for optimizing in vitro BBB models.


Asunto(s)
Células Endoteliales , Proteómica , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Estrés Mecánico
5.
Eur J Drug Metab Pharmacokinet ; 46(5): 625-635, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34275128

RESUMEN

BACKGROUND AND OBJECTIVES: Equilibrative nucleoside transporter (ENT) 1 is a widely-expressed drug transporter, handling nucleoside analogues as well as endogenous nucleosides. ENT1 has been postulated to be inhibited by some marketed tyrosine kinase inhibitors (TKIs). To obtain insights into this point, the interactions of 24 TKIs with ENT1 activity have been analyzed. METHODS: Inhibition of ENT1 activity was investigated in vitro through quantifying the decrease of [3H]-uridine uptake caused by TKIs in HAP1 ENT2-knockout cells, exhibiting selective ENT1 expression. TKI effects towards ENT1-mediated transport were additionally characterized in terms of their in vivo relevance and of their relationship to TKI molecular descriptors. Putative transport of the TKI lorlatinib by ENT1/ENT2 was analyzed by LC-MS/MS. RESULTS: Of 24 TKIs, 12 of them, each used at 10 µM, were found to behave as moderate or strong inhibitors of ENT1, i.e., they decreased ENT1 activity by at least 35%. This inhibition was concentration-dependent for at least the strongest ones (IC50 less than 10 µM) and was correlated with some molecular descriptors, especially with atom-type E-state indices. Lorlatinib was notably a potent in vitro inhibitor of ENT1/ENT2 (IC50 values around 1.0-2.5 µM) and was predicted to inhibit these nucleoside transporters at relevant clinical concentrations, without, however, being a substrate for them. CONCLUSION: Our data unambiguously add ENT1 to the list of drug transporters inhibited by TKIs, especially by lorlatinib. This point likely merits attention in terms of possible drug-drug interactions, notably for nucleoside analogues, whose ENT1-mediated uptake into their target cells may be hampered by co-administrated TKIs such as lorlatinib.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Línea Celular Tumoral , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Transportador Equilibrativo 2 de Nucleósido/genética , Técnicas de Inactivación de Genes , Humanos , Concentración 50 Inhibidora , Lactamas/administración & dosificación , Lactamas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazoles/administración & dosificación , Pirazoles/farmacología , Espectrometría de Masas en Tándem
6.
Fundam Clin Pharmacol ; 35(5): 919-929, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33523504

RESUMEN

Organic cation transporter (OCT) 3 (SLC22A3) is a widely expressed drug transporter, handling notably metformin and platinum derivatives, as well as endogenous compounds like monoamine neurotransmitters. OCT3 has been shown to be inhibited by a few marketed tyrosine kinase inhibitors (TKIs). The present study was designed to determine whether additional TKIs may interact with OCT3. For this purpose, the effects of 25 TKIs toward OCT3 activity were analyzed using OCT3-overexpressing HEK293 cells. 13/25 TKIs, each used at 10 µM, were found to behave as moderate or strong inhibitors of OCT3 activity, that is, they decreased OCT3-mediated uptake of the fluorescent dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide by at least 50% or 80%, respectively. This OCT3 inhibition was correlated to some molecular descriptors of TKIs, such as the percentage of H atoms and that of cationic forms at pH = 7.4. It was concentration-dependent, notably for brigatinib, ceritinib, and crizotinib, which exhibited low half maximal inhibitory concentration (IC50 ) values in the 28-106 nM range. Clinical concentrations of these three marketed TKIs, as well as those of pacritinib, were next predicted to inhibit in vivo OCT3 activity according to regulatory criteria. Cellular TKI accumulation experiments as well as trans-stimulation assays, however, demonstrated that OCT3 does not transport brigatinib, ceritinib, crizotinib, and pacritinib, thus discarding any implication of OCT3 in the pharmacokinetics of these TKIs. Taken together, these data suggest that some TKIs may act as potent inhibitors of OCT3 activity, which may have consequences in terms of drug-drug interactions and toxicity.


Asunto(s)
Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transporte Biológico/efectos de los fármacos , Crizotinib/farmacología , Células HEK293/efectos de los fármacos , Humanos , Compuestos Organofosforados/farmacología , Pirimidinas/farmacología , Sulfonas/farmacología
7.
Xenobiotica ; 49(1): 22-35, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29297729

RESUMEN

1. We have applied the concept of using MBIs to produce CYP-Silensomes to quantify the contribution of the major CYPs to drug metabolism (fmCYP). 2. The target CYPs were extensively and selectivity inhibited by the selected MBIs, while non-target CYPs were inhibited by less than 20% of the homologous control activities. Only CYP2D6-Silensomes exhibited a CYP2B6 inhibition that could be easily and efficiently encountered by subtracting the fmCYP2B6 measured using CYP2B6-Silensomes to adjust the fmCYP2D6. 3. To validate the use of a panel of 6 CYP-Silensomes, we showed that the fmCYP values of mono- and multi-CYP metabolised drugs were well predicted, with 70% within ± 15% accuracy. Moreover, the correlation with observed fmCYP values was higher than that for rhCYPs, which were run in parallel using the same drugs (<45% within ±15% accuracy). Moreover, the choice of the RAF substrate in rhCYP predictions was shown to affect the accuracy of the fmCYP measurement. 4. These results support the use of CYP1A2-, CYP2B6-, CYP2C8-, CYP2C9-, CYP2D6 and CYP3A4-Silensomes to accurately predict fmCYP values during the in vitro enzyme phenotyping assays in early, as well as in development, phases of drug development.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Modelos Biológicos , Humanos , Técnicas In Vitro , Inactivación Metabólica , Tasa de Depuración Metabólica
8.
Eur J Drug Metab Pharmacokinet ; 44(1): 13-30, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30167999

RESUMEN

Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Eliminación Hepatobiliar/fisiología , Hepatocitos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Línea Celular Transformada , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Eliminación Hepatobiliar/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Preparaciones Farmacéuticas/administración & dosificación
9.
J Pharm Biomed Anal ; 164: 496-508, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30453156

RESUMEN

Targeted protein quantification using tandem mass spectrometry coupled to high performance chromatography (LC-MS/MS) has been used to quantify proteins involved in the absorption, distribution, metabolism and excretion (ADME) of xenobiotics to better understand these processes. At the blood-brain barrier (BBB), these proteins are particularly important for the maintenance of brain homeostasis, but also regulate the distribution of therapeutic drugs. Absolute quantification (AQUA) is achieved by using stable isotope labeled surrogate peptides specific to the target protein and analyzing the digested proteins in a triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode to achieve a high specificity, sensitivity, accuracy and reproducibility. The main objective in this work was to develop and validate an UHPLC-MS/MS method for quantification of the ATP-binding cassette (ABC) transporter proteins Bcrp and P-gp and Na+/K + ATPase pump at the BBB. Three isoforms of the α-subunit from this pump (Atp1a 1, 2 and 3) were quantified to evaluate the presence of non-endothelial cells in the BBB using one common and three isoform-specific peptides; while Bcrp ad P-gp were quantified using 2 and 3 peptides, respectively, to improve the confidence on their quantification. The protein digestion was optimized, and the analytical method was comprehensively validated according to the American Food and Drug Administration Bioanalytical Method Validation Guidance published in 2018. Linearity across four magnitude orders (0.125 to 510 pmol·mL-1) sub-pmol·mL-1 LOD and LOQ, accuracy and precision (deviation < 15% and CV < 15%) were proven for most of the peptides by analyzing calibration curves and four levels of quality controls in both a pure solution and a complex matrix of digested yeast proteins, to mimic the matrix effect. In addition, digestion performance and stability of the peptides was shown using standard peptides spiked in a yeast digest or mouse kidney plasma membrane proteins as a study case. The validated method was used to characterize mouse kidney plasma membrane proteins, mouse brain cortical vessels and rat brain cortical microvessels. Most of the results agree with previously reported values, although some differences are seen due to different sample treatment, heterogeneity of the sample or peptide used. Importantly, the use of three peptides allowed the quantification of P-gp in mouse kidney plasma membrane proteins which was below the limit of quantification of the previously NTTGALTTR peptide. The different levels obtained for each peptide highlight the importance and difficulty of choosing surrogate peptides for protein quantification. In addition, using isoform-specific peptides for the quantification of the Na+/K + ATPase pump, we evaluated the presence of neuronal and glial cells on rat and mouse brain cortical vessels in addition to endothelial cells. In mouse liver and kidney, only the alpha-1 isoform was detected.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/análisis , Barrera Hematoencefálica/metabolismo , Oligopéptidos/química , Proteómica/métodos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Isótopos de Carbono , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Isótopos , Riñón/citología , Riñón/metabolismo , Límite de Detección , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Isótopos de Nitrógeno , Isoformas de Proteínas/análisis , Isoformas de Proteínas/química , Estabilidad Proteica , Proteómica/instrumentación , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/instrumentación , Espectrometría de Masas en Tándem/métodos
10.
Sci Rep ; 8(1): 16115, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382126

RESUMEN

HepaRG is an original human hepatoma cell line, acquiring highly differentiated hepatic features when exposed to dimethylsulfoxide (DMSO). To search alternatives to DMSO, which may exert some toxicity, we have analyzed the effects of forskolin (FSK), a cAMP-generating agent known to favor differentiation of various cell types. FSK used at 50 µM for 3 days was found to promote polarization of high density-plated HepaRG cells, i.e., it markedly enhanced the formation of functional biliary canaliculi structures. It also increased expressions of various hepatic markers, including those of cytochrome P-450 (CYP) 3A4, of drug transporters like NTCP, OATP2B1 and BSEP, and of metabolism enzymes like glucose 6-phosphatase. In addition, FSK-treated HepaRG cells displayed enhanced activities of CYP3A4, NTCP and OATPs when compared to untreated cells. These polarizing/differentiating effects of FSK were next shown to reflect not only the generation of cAMP, but also the activation of the xenobiotic sensing receptors PXR and FXR by FSK. Co-treatment of HepaRG cells by the cAMP analog Sp-5,6-DCl-cBIMPS and the reference PXR agonist rifampicin reproduced the polarizing effects of FSK. Therefore, FSK may be considered as a relevant alternative to DMSO for getting polarized and differentiated HepaRG cells, notably for pharmacological and toxicological studies.


Asunto(s)
Carcinoma Hepatocelular/patología , Polaridad Celular , Colforsina/farmacología , Neoplasias Hepáticas/patología , Canalículos Biliares/efectos de los fármacos , Canalículos Biliares/patología , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Polaridad Celular/efectos de los fármacos , AMP Cíclico/análogos & derivados , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Receptor X de Pregnano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rifampin/farmacología , Transducción de Señal
11.
Pharmaceutics ; 10(4)2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30469356

RESUMEN

The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.

12.
Eur J Pharm Sci ; 121: 85-94, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-29709579

RESUMEN

The presence of several binding sites for both substrates and inhibitors is yet a poorly explored thematic concerning the assessment of the drug-drug interactions risk due to interactions of multiple drugs with the human transport protein P-glycoprotein (P-gp or MDR1, gene ABCB1). In this study we measured the inhibitory behaviour of a set of known drugs towards P-gp by using three different probe substrates (digoxin, Hoechst 33,342 and rhodamine 123). A structure-based model was built to unravel the different substrates binding sites and to rationalize the cases where drugs were not inhibiting all the substrates. A separate set of experiments was used to validate the model and confirmed its suitability to either detect the substrate-dependent P-gp inhibition and to anticipate proper substrates for in vitro experiments case by case. The modelling strategy described can be applied for either design safer drugs (P-gp as antitarget) or to target specific sub-site inhibitors towards other drugs (P-gp as target).


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Modelos Moleculares , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Bencimidazoles/farmacología , Línea Celular Tumoral , Digoxina/farmacología , Humanos , Rodamina 123/farmacología
13.
J Neurochem ; 142(4): 597-609, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28581635

RESUMEN

Liquid chromatography coupled to tandem mass spectrometry-based targeted absolute protein quantification (in fmol of the analyte protein per µg of total protein) is employed for the molecular characterization of the blood-brain barrier using isolated brain microvessels. Nevertheless, the heterogeneity of the sample regarding the levels of different cells co-isolated within the microvessels and bovine serum albumin (BSA) contamination (from buffers) are not always evaluated. We developed an unlabeled targeted liquid chromatography coupled to tandem mass spectrometry method to survey the levels of endothelial cells (ECs), astrocytes, and pericytes, as well as BSA contaminant in rat cortical microvessels. Peptide peak identities were evaluated using a spectral library and chromatographic parameters. Sprague-Dawley rat microvessels obtained on three different days were analyzed with this method complemented by an absolute quantification multiple reaction monitoring method for transporter proteins P-gp, Bcrp, and Na+ /K+ ATPase pump using stable isotope labeled peptides as internal standard. Inter-day differences in the cell markers and BSA contamination were observed. Levels of cell markers correlated positively between each other. Then, the correlation between cell marker proteins and transporter proteins was evaluated to choose the best EC marker protein for protein quantification normalization. The membrane protein Pecam-1 showed a very high correlation with the EC-specific transporter P-gp (Pearson product-moment correlation coefficient (r) > 0.89) and moderate to high with Bcrp (r ≥ 0.77), that can be found also in pericytes and astrocytes. Therefore, Pecam-1 was selected as a marker for the normalization of the quantification of the proteins of endothelial cells.


Asunto(s)
Transporte Biológico/fisiología , Biomarcadores/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microvasos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Animales , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
14.
Eur J Pharm Sci ; 106: 302-312, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28603032

RESUMEN

The catecholamine epinephrine is known to repress expression of hepatic drug metabolizing enzymes such as cytochromes P-450. The present study was designed to determine whether epinephrine may also target expression of main hepatic drug transporters, that play a major role in liver detoxification and are commonly coordinately regulated with drug detoxifying enzymes. Treatment of primary human hepatocytes with 10µM epinephrine for 24h repressed mRNA expression of various transporters, such as the sinusoidal influx transporters NTCP, OATP1B1, OATP2B1, OAT2, OAT7 and OCT1 and the efflux transporters MRP2, MRP3 and BSEP, whereas it induced that of MDR1, but failed to alter that of BCRP. Most of these changes in transporter mRNA levels were also found in epinephrine-exposed human highly-differentiated hepatoma HepaRG cells, which additionally exhibited reduced protein expression of OATP2B1 and MRP3, increased expression of P-glycoprotein and decreased transport activity of NTCP, OATPs and OCT1. Epinephrine effects towards transporter mRNA expression in human hepatocytes were next shown to be correlated to those of the selective ß2-adrenoreceptor (ADR) agonist fenoterol, of the adenylate cyclase activator forskolin and of the cAMP analogue 8-bromo-cAMP. In addition, the non-selective ß-ADR antagonist carazolol and the selective ß2-ADR antagonist ICI-118,551, unlike the α-ADR antagonist phentolamine, suppressed epinephrine-mediated repressions of transporter mRNA expression. Taken together, these data indicate that epinephrine regulates in vitro expression of main hepatic drug transporters in a ß2-ADR/adenylate cyclase/cAMP-dependent manner. Hepatic drug transport appears therefore as a target of the ß2-adrenergic system, which may have to deserve attention for drugs interacting with ß2-ADRs.


Asunto(s)
Epinefrina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Adenilil Ciclasas/metabolismo , Adulto , Transporte Biológico , Línea Celular Tumoral , Células Cultivadas , AMP Cíclico/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/genética , ARN Mensajero/metabolismo
15.
Eur J Pharm Sci ; 106: 122-132, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28552429

RESUMEN

A PBPK modelling approach was used to predict organic anion transporter (OAT) mediated drug-drug interactions involving S44121, a substrate and an inhibitor of OAT1 and OAT3. Model predictions were then compared to the results of a clinical DDI study which was carried out to investigate the interaction of S44121 with probenecid, tenofovir and ciprofloxacin. PBPK models were developed and qualified using existing clinical data, and inhibition constants were determined in vitro. The model predictions for S44121 as an OAT inhibitor were similar to the results obtained from the clinical DDI study, with no interaction observed for tenofovir or ciprofloxacin in the presence of S44121. An observed AUC ratio of 2.2 was obtained for S44121 in the presence of probenecid, which was slightly higher than the model predicted AUC ratio of 1.6. A DDI study in the monkey was also carried out for the interaction between S44121 and probenecid, since the monkey has previously been reported to be a good preclinical model for OAT-mediated DDI. However, this study highlighted a species difference in the major route of S44121 elimination between monkey (mainly hepatic metabolism) and human (mainly renal excretion of unchanged drug), rendering a comparison between the two DDI studies difficult. Overall, for S44121 the PBPK modelling approach gave a better prediction of the extent of DDI than the static predictions based on inhibitor Cmax and IC50, therefore this can be considered a potentially valuable tool within drug development.


Asunto(s)
Ciprofloxacina/metabolismo , Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Probenecid/metabolismo , Tenofovir/metabolismo , Animales , Área Bajo la Curva , Línea Celular , Ciprofloxacina/farmacología , Interacciones Farmacológicas , Humanos , Concentración 50 Inhibidora , Macaca fascicularis , Masculino , Modelos Biológicos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Permeabilidad , Probenecid/farmacología , Reabsorción Renal , Tenofovir/farmacología
16.
Int J Mol Sci ; 18(4)2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28375174

RESUMEN

Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug-drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug-drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Proteínas Transportadoras de Solutos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Regulación de la Expresión Génica , Humanos , Isoenzimas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Fosforilación , Proteínas Transportadoras de Solutos/genética
17.
Eur J Drug Metab Pharmacokinet ; 42(5): 871-878, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28260174

RESUMEN

BACKGROUND AND OBJECTIVES: Gevokizumab is a potent anti-interleukin (IL)-1ß neutralizing monoclonal antibody (mAb), which may be used for treating inflammatory or autoimmune diseases. The present study was designed to characterize the potential effects of this mAb towards well-established IL-1ß-mediated repression of hepatic drug detoxifying proteins, like cytochrome P450 (CYP) 3A4 and drug transporters. METHODS: Primary cultured human hepatocytes were exposed to various concentrations of IL-1ß in the absence or presence of gevokizumab (5 µg/mL); mRNA expression and activity of CYP3A4 and transporters were next determined. RESULTS: Gevokizumab was found to down-modulate, but not abolish, the repression of CYP3A4 and drug transporter mRNAs caused by IL-1ß in human hepatocytes, through shifting up IL-1ß half maximal inhibitory concentration (IC50) values by factors ranging from 6.8 to 10.4. The mAb concomitantly shifted IL-1ß IC50 values towards CYP3A4 activity from 22.0 pg/mL (in the absence of gevokizumab) to 796 pg/mL (in the presence of gevokizumab) and counteracted the decrease of organic anion-transporting polypeptide activity occurring in response to 50 pg/mL IL-1ß, but not that occurring at higher IL-1ß concentration (1000 pg/mL). CONCLUSION: Gevokizumab attenuates, but not abolishes, IL-1ß-mediated functional repression of CYP3A4 and drug transporters in human hepatocytes, which agrees with the fact that the mAb is considered as a modulator and not a blocker of IL-1ß signaling. This attenuation of IL-1ß-mediated down-regulation of hepatic detoxifying proteins by gevokizumab may have to be evaluated in terms of potential therapeutic protein drug-drug interactions when considering future development and therapeutic uses of this IL-1ß neutralizing mAb.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Citocromo P-450 CYP3A/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Interleucina-1beta/metabolismo , Anciano , Transporte Biológico/efectos de los fármacos , Línea Celular , Interacciones Farmacológicas/fisiología , Femenino , Humanos , Persona de Mediana Edad , Transportadores de Anión Orgánico/metabolismo
18.
PLoS One ; 12(1): e0169480, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28099443

RESUMEN

Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 µM (OCT1 inhibition by allethrin) to 77.6 µM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 µM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can act as regulators of the activity of various ABC and SLC drug transporters, but only when used at high and non-relevant concentrations, making unlikely any contribution of these transporter activity alterations to pyrethroid toxicity in environmentally exposed humans.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Aletrinas/toxicidad , Plaguicidas/toxicidad , Piretrinas/toxicidad , Proteínas Transportadoras de Solutos/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Aletrinas/química , Línea Celular , Dopamina/metabolismo , Células HEK293/efectos de los fármacos , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Transportador 1 de Catión Orgánico/antagonistas & inhibidores , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo , Plaguicidas/química , Piretrinas/química , Proteínas Transportadoras de Solutos/metabolismo , Relación Estructura-Actividad , Pruebas de Toxicidad
19.
Toxicol In Vitro ; 40: 34-44, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27989701

RESUMEN

The plastic component bisphenol A (BPA) is suspected to exert deleterious effects towards human health and targets various cellular and molecular pathways, including activity of ATP-binding cassette drug transporters. The present study was designed to determine whether BPA and some derivatives, like its substitutes bisphenol F (BPF) and bisphenol S (BPS) and the flame retardant tetrabromobisphenol A (TBBPA), may additionally interact with solute carrier (SLC) drug transporters. Activities of the various following SLC transporters were inhibited in a major way (by >60%) by 100µM bisphenols: OCT1 and MATE1 (by BPA and TBBPA), OATP1B1 (by BPA, BPF and TBBPA), OATP1B3 and NTCP (by TBBPA) and OAT3 (by BPA, BPF, BPS and TBBPA); by contrast, activities of other transporters were not impacted (MATE2-K) or were stimulated (notably OCT1 by BPS and OCT2 by BPF). Transporter inhibitions due to bisphenols were concentrations-dependent, with half maximal inhibitory concentrations (IC50) ranging from 0.5µM to 73.5µM. BPA was finally shown to be not transported by OAT3, although inhibiting this transporter in a competitive manner. Taken together, these data indicate that bisphenols interact with SLC transporters, at concentration levels however rather higher than those occurring in humans in response to environmental exposure.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Fenoles/farmacología , Bifenilos Polibrominados/farmacología , Sulfonas/farmacología , Línea Celular Tumoral , Células HEK293 , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo
20.
Xenobiotica ; 47(7): 562-575, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27485383

RESUMEN

1. Among the different in vitro studies recommended by the regulatory agencies, no gold-standard model can easily and directly measure the quantitative CYP450 contributions to drug biotransformation. In this article, we propose an original strategy, called SilensomesTM, to produce human liver microsomes silenced for one specific CYP450, thanks to specific mechanism-based inhibitors (MBI). 2. Using azamulin as a specific CYP3A4 MBI, we demonstrated the proof of concept that CYP3A4 can be totally, specifically (even against 3A5) and permanently (at least for six years) inhibited by our process. Thus, comparing clearance in control and CYP3A4-SilensomesTM, CYP3A4 contributions were determined for 11 CYP3A4 substrates which correlated with known in vivo contributions and revealed accuracy with less than 10% error. In comparison, contributions determined using recombinant human CYP450 (rhCYP450s) were less accurate (more than 10% error for 30% of the tested CYP3A4 substrates). 3. This easy and ready-to-use in vitro method combines the advantages of existing models (specificity of rhCYP450s and representativeness of HLM) without their drawbacks. The same strategy could be used to silence other major CYP450s one-by-one to provide a complete direct CYP450 quantitative phenotyping kit.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Inactivación Metabólica/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Técnicas In Vitro , Cinética , Tasa de Depuración Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA