RESUMEN
BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.
Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Desdiferenciación Celular , Ceruletida , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Acinares/patología , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/genética , Metaplasia/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Humanos , Pancreatitis/patología , Pancreatitis/genética , Pancreatitis/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Modelos Animales de Enfermedad , Páncreas/patología , Páncreas/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Carcinoma in Situ/patología , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , TranscriptomaRESUMEN
OBJECTIVE: Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN: We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS: P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION: Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Lesiones Precancerosas , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Composición de Base , Lesiones Precancerosas/patología , Filogenia , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Carcinoma in Situ/genética , Células Acinares/patología , Bacterias/genéticaRESUMEN
Genetic engineering of immune cells has opened new avenues for improving their functionality but it remains a challenge to pinpoint which genes or combination of genes are the most beneficial to target. Here, we conduct High Multiplicity of Perturbations and Cellular Indexing of Transcriptomes and Epitopes (HMPCITE-seq) to find combinations of genes whose joint targeting improves antigen-presenting cell activity and enhances their ability to activate T cells. Specifically, we perform two genome-wide CRISPR screens in bone marrow dendritic cells and identify negative regulators of CD86, that participate in the co-stimulation programs, including Chd4, Stat5b, Egr2, Med12, and positive regulators of PD-L1, that participate in the co-inhibitory programs, including Sptlc2, Nckap1l, and Pi4kb. To identify the genetic interactions between top-ranked genes and find superior combinations to target, we perform high-order Perturb-Seq experiments and we show that targeting both Cebpb and Med12 results in a better phenotype compared to the single perturbations or other combinations of perturbations.
Asunto(s)
Activación de Linfocitos , Linfocitos T , Activación de Linfocitos/genética , Factores de Transcripción , Transcriptoma/genética , Inmunidad Innata/genéticaRESUMEN
The pancreas includes two major systems: the endocrine system, which produces and secretes hormones, and the exocrine system, which accounts for approximately 90% of the pancreas and includes cells that produce and secrete digestive enzymes. The digestive enzymes are produced in the pancreatic acinar cells, stored in vesicles called zymogens, and are then released into the duodenum via the pancreatic duct to initiate metabolic processes. The enzymes produced by the acinar cells can kill cells or degrade cell-free RNA. In addition, acinar cells are fragile, and common dissociation protocols result in a large number of dead cells and cell-free proteases and RNases. Therefore, one of the biggest challenges in pancreatic tissue digestion is recovering intact and viable cells, especially acinar cells. The protocol presented in this article shows a two-step method that we developed to meet this need. The protocol can be used to digest normal pancreata, pancreata that include pre-malignant lesions, or pancreatic tumors that include a large number of stromal and immune cells.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Páncreas , Células Acinares , Disección , Fármacos GastrointestinalesRESUMEN
Recent advances in single-cell RNA sequencing and bioinformatics have drastically increased our ability to interrogate the cellular composition of traditionally difficult to study organs, such as the pancreas. With the advent of these technologies and approaches, the field has grown, in just a few years, from profiling pancreas disease states to identifying molecular mechanisms of therapy resistance in pancreatic ductal adenocarcinoma, a particularly deadly cancer. Single-cell transcriptomics and related spatial approaches have identified previously undescribed epithelial and stromal cell types and states, how these populations change with disease progression, and potential mechanisms of action which will serve as the basis for designing new therapeutic strategies. Here, we review the recent literature on how single-cell transcriptomic approaches have changed our understanding of pancreas biology and disease progression.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Oscuridad , Páncreas/patología , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , BiologíaRESUMEN
While the existence of an indigenous placental microbiota remains controversial, several pathogens are known to be involved in adverse pregnancy outcomes. Fusobacterium nucleatum is an oral bacterium that is one of several bacteria associated with preterm birth. Oral fusobacteria translocate to the placenta hematogenously; however, the mechanisms localizing them to the placenta remain unclear. Here, using peanut agglutinin, we demonstrate that the level of Gal-GalNAc (Galß1-3GalNAc; Thomsen Friedenreich antigen) found on trophoblasts facing entering maternal blood rises during gestation and is recognized by the fusobacterial Fap2 Gal-GalNAc lectin. F. nucleatum binding to human and mouse placenta correlates with Gal-GalNAc levels and is reduced upon O-glycanase treatment or with soluble Gal-GalNAc. Fap2-inactivated F. nucleatum shows reduced binding to Gal-GalNAc-displaying placental sections. In a mouse model, intravenously injected Fap2-expressing F. nucleatum, but not a Fap2 mutant, reduces mouse fetal survival by 70%.
Asunto(s)
Fusobacterium nucleatum , Nacimiento Prematuro , Poliposis Adenomatosa del Colon , Animales , Antígenos de Carbohidratos Asociados a Tumores , Femenino , Lectinas , Ratones , Placenta , EmbarazoRESUMEN
Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.
Asunto(s)
Subunidad alfa del Receptor de Interleucina-7/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Células Precursoras de Linfocitos B/inmunología , Transducción de Señal/inmunología , Animales , Antígenos CD34/genética , Antígenos CD34/inmunología , Antígenos CD34/metabolismo , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Expresión Génica/inmunología , Humanos , Subunidad alfa del Receptor de Interleucina-7/genética , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Células Precursoras de Linfocitos B/metabolismo , RNA-Seq/métodos , Receptores de Citocinas/genética , Receptores de Citocinas/inmunología , Receptores de Citocinas/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Trasplante HeterólogoRESUMEN
OBJECTIVE: Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN: To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS: We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS: These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
Asunto(s)
Adenocarcinoma/patología , Senescencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología , Senoterapéuticos/uso terapéutico , Adenocarcinoma/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/metabolismo , Lesiones Precancerosas/metabolismoRESUMEN
BACKGROUND: Kaposi's sarcoma-associated herpesvirus (KSHV) is a transforming gammaherpesvirus. Like other herpesviruses, KSHV infection is for life long and there is no treatment that can cure patients from the virus. In addition, there is an urgent need to target viral genes to study their role during the infection cycle. The CRISPR-Cas9 technology offers a means to target viral genomes and thus may offer a novel strategy for viral cure as well as for better understanding of the infection process. We evaluated the suitability of this platform for the targeting of KSHV. METHODS: We have used the recombinat KSHV BAC16 genome, which contains an expression cassette encoding hygromycin-resistance and a GFP marker gene. Three genes were targeted: gfp, which serves as a marker for infection; orf45 encoding a lytic viral protein; and orf73, encoding LANA which is crucial for latent infection. The fraction of cells expressing GFP, viral DNA levels and LANA expression were monitored and viral genomes were sequenced. RESULTS: We found that KSHV episomes can be targeted by CRISPR-Cas9. Interestingly, the quantity of KSHV DNA declined, even when target sites were not functionally important for latency. In addition, we show that antibiotic selection, used to maintain infection, interferes with the outcome of targeting. CONCLUSIONS: Our study provides insights into the use of this fundamental approach for the study and manipulation of KSHV. It provides guidelines for the targeting CRISPR-Cas9 to the viral genome and for outcomes interpretation.
Asunto(s)
Sistemas CRISPR-Cas , Genoma Viral , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Antígenos Virales , Genes Reporteros , Proteínas Fluorescentes Verdes , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/metabolismo , Latencia del VirusRESUMEN
Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.
Asunto(s)
Células Acinares/patología , Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica , Páncreas/patología , Neoplasias Pancreáticas/genética , Lesiones Precancerosas/genética , Animales , Animales Modificados Genéticamente , Biopsia , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Heterogeneidad Genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Metaplasia/genética , Ratones , Mutación , Páncreas/citología , Páncreas/cirugía , Pancreatectomía , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND: Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution. RESULTS: Using single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits. CONCLUSIONS: We provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.
Asunto(s)
Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Tipificación del Cuerpo , Pollos , Extremidades/embriología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1-RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.
Asunto(s)
Proteínas Portadoras/genética , Daño del ADN , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN/biosíntesis , ADN Helicasas/genética , Metilmetanosulfonato/toxicidad , Mutación , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/química , Homología Estructural de Proteína , Relación Estructura-Actividad , Supresión GenéticaRESUMEN
Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.
Asunto(s)
Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Ciclo Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Retroalimentación , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Ratones , Ratones Transgénicos , Factores de Transcripción/metabolismoRESUMEN
Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting â¼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.
Asunto(s)
Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endorribonucleasas , Retroalimentación , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinasas , ARN Guía de Kinetoplastida/metabolismo , Transcripción Genética , Respuesta de Proteína DesplegadaRESUMEN
We recently discovered a structurally novel class of endogenous lipids, branched palmitic acid esters of hydroxy stearic acids (PAHSAs), with beneficial metabolic and anti-inflammatory effects. We tested whether PAHSAs protect against colitis, which is a chronic inflammatory disease driven predominantly by defects in the innate mucosal barrier and adaptive immune system. There is an unmet clinical need for safe and well tolerated oral therapeutics with direct anti-inflammatory effects. Wild-type mice were pretreated orally with vehicle or 5-PAHSA (10 mg/kg) and 9-PAHSA (5 mg/kg) once daily for 3 days, followed by 10 days of either 0% or 2% dextran sulfate sodium water with continued vehicle or PAHSA treatment. The colon was collected for histopathology, gene expression, and flow cytometry. Intestinal crypt fractions were prepared for ex vivo bactericidal assays. Bone marrow-derived dendritic cells pretreated with vehicle or PAHSA and splenic CD4+ T cells from syngeneic mice were co-cultured to assess antigen presentation and T cell activation in response to LPS. PAHSA treatment prevented weight loss, improved colitis scores (stool consistency, hematochezia, and mouse appearance), and augmented intestinal crypt Paneth cell bactericidal potency via a mechanism that may involve GPR120. In vitro, PAHSAs attenuated dendritic cell activation and subsequent T cell proliferation and Th1 polarization. The anti-inflammatory effects of PAHSAs in vivo resulted in reduced colonic T cell activation and pro-inflammatory cytokine and chemokine expression. These anti-inflammatory effects appear to be partially GPR120-dependent. We conclude that PAHSA treatment regulates innate and adaptive immune responses to prevent mucosal damage and protect against colitis. Thus, PAHSAs may be a novel treatment for colitis and related inflammation-driven diseases.
Asunto(s)
Inmunidad Adaptativa/inmunología , Colitis/tratamiento farmacológico , Ácidos Grasos/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Células de Paneth/inmunología , Células TH1/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/farmacología , Masculino , Ratones , Células de Paneth/patología , Receptores Acoplados a Proteínas G/inmunología , Células TH1/patologíaRESUMEN
Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.
Asunto(s)
Sistemas CRISPR-Cas , Técnicas Genéticas , Inmunidad Innata , Animales , Células de la Médula Ósea/inmunología , Diferenciación Celular , Supervivencia Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/metabolismo , Genoma , Humanos , Ratones , Modelos Genéticos , Neurofibromatosis/metabolismo , Neurofibromatosis/patología , Saccharomycetales/metabolismoRESUMEN
CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.
Asunto(s)
Adenocarcinoma/genética , Modelos Animales de Enfermedad , Genes Supresores de Tumor , Ingeniería Genética/métodos , Neoplasias Pulmonares/genética , Oncogenes , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células Dendríticas/metabolismo , Técnicas de Sustitución del Gen , Vectores Genéticos , Lentivirus , Ratones , Ratones TransgénicosRESUMEN
UNLABELLED: Marek's disease virus 1 (MDV-1), an oncogenic α-herpesvirus that induces T-cell lymphomas in chickens, serves as model system to study transformation by lymphotropic herpesviruses. Like the oncogenic human γ-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), MDV-1 encodes several viral microRNAs (miRNAs). One MDV-1 miRNA, miR-M4, shares the same "seed" targeting sequence with both a KSHV miRNA, miR-K11, and cellular miR-155. Importantly, miR-M4 plays a critical role in T-cell transformation by MDV-1, while miR-K11 and cellular miR-155 are thought to play key roles in B-cell transformation by KSHV and EBV, respectively. Here, we present an analysis of the mRNAs targeted by viral miRNAs expressed in the chicken T-cell line MSB1, which is naturally coinfected with MDV-1 and the related nonpathogenic virus MDV-2. Our analysis identified >1,000 endogenous mRNAs targeted by miRNAs encoded by each virus, many of which are targeted by both MDV-1 and MDV-2 miRNAs. We present a functional analysis of an MDV-1 gene, RLORF8, targeted by four MDV-1 miRNAs and a cellular gene, encoding interleukin-18 (IL-18) and targeted by both MDV-1 and MDV-2 miRNAs, and show that ectopic expression of either protein in a form resistant to miRNA inhibition results in inhibition of cell proliferation. Finally, we present a restricted list of 9 genes targeted by not only MDV-1 miR-M4 but also KSHV miR-K11 and human miR-155. Given the critical role played by miR-155 seed family members in lymphomagenesis in humans and chickens, these mRNA targets may contain genes whose inhibition plays a conserved role in herpesvirus transformation. IMPORTANCE: Herpesviruses cause lymphomas in both humans and chickens, and in both cases, evidence indicates that virally encoded miRNAs, or virally subverted cellular miRNAs, belonging to the miR-155 seed family, play a critical role in this process. However, because each miRNA regulates numerous cellular mRNAs species, it has been difficult to elucidate which miRNA targets are important. Given the evolutionary distance between chickens and humans and the observation that miR-155 is nevertheless highly conserved in both species, we reasoned that the identification of shared miR-155 targets might shed light on this process. Here, we present an analysis of the mRNAs targeted by miRNAs encoded by the oncogenic avian herpesvirus MDV-1 in transformed chicken T cells, including a short list of mRNAs that are also targeted by miR-155 seed family miRNAs in EBV- or KSHV-transformed human B cells, and present an initial functional analysis of some of these miRNA targets.
Asunto(s)
Interacciones Huésped-Patógeno , Mardivirus/fisiología , MicroARNs/metabolismo , ARN Viral/metabolismo , Linfocitos T/virología , Animales , Línea Celular , Pollos , Perfilación de la Expresión Génica , Mardivirus/genética , MicroARNs/genética , ARN Viral/genéticaRESUMEN
Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1Δ srs2Δ have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1Δ srs2Δ double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1Δ and srs2Δ. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus.