Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2403805121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39018195

RESUMEN

It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.


Asunto(s)
Genoma Viral , Animales , Filogenia , Tamaño del Genoma , Proteínas Virales/genética , Proteínas Virales/metabolismo , Exonucleasas/metabolismo , Exonucleasas/genética , ARN Viral/genética
2.
Insect Mol Biol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847568

RESUMEN

In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.

3.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809251

RESUMEN

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Asunto(s)
Flavivirus , Ixodidae , Filogenia , Animales , Flavivirus/genética , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , China , Ixodidae/virología , Femenino
4.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048640

RESUMEN

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicosilación , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales
5.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059479

RESUMEN

Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.


Asunto(s)
Flaviviridae , Flavivirus , Animales , Flaviviridae/genética , Rana temporaria/genética , Filogenia , ARN Viral/genética , ARN Viral/química , Flavivirus/genética , Poliproteínas/genética , Reino Unido , Genoma Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...