Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38828808

RESUMEN

Carbon quantum dots have become attractive in various applications, such as drug delivery, biological sensing, photocatalysis, and solar cells. Among these, pH sensing via luminescence lifetime measurements of surface-functionalized carbon dots is one application currently investigated for their long lifetime and autonomous operation. In this article, we explore the theoretical connection between excitation lifetimes and the pH value of the surrounding liquid via the protonation and deprotonation of functional groups. Example calculations applied to m-phenylenediamine, phloroglucinol, and tethered disperse blue 1 are shown by applying a separation approach treating the electronic wave function of functional groups separately from the internal electronic structure of the (large) carbon dot. The bulk of the carbon dot is treated as an environment characterized by its optical spectrum that shifts the transition rates of the functional group. A simple relationship between pH, pKa, and mixed fluorescence lifetime is derived from the transition rates of the protonated and deprotonated states. pH sensitivity improves when the difference in the transition rates is greatest between protonated and deprotonated species, with the greatest sensitivity found where the pKa is close to the pH region of interest. The introduced model can directly be extended to consider multicomponent liquids and multiple protonation states.

2.
J Colloid Interface Sci ; 630(Pt B): 193-201, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327722

RESUMEN

The specific effects of salts (strong electrolytes) on biomolecular properties have been investigated for more than a century. By contrast, the specific role of pH buffers (weak electrolytes and their salts) has usually been ignored. Here, specific buffer effects on DNA thermal stability were evaluated by measuring the melting curve of calf thymus DNA through UV-vis spectroscopy. The study was carried out using phosphate, Tris, citrate and cacodylate buffers at fixed pH 7.4 at concentrations varying systematically in the range 1-600 mM. DNA stability increases with buffer concentration and is influenced specifically by buffer type. To interpret empirical data, a theoretical model was applied with parameters quantifying the impact of buffer on the DNA backbone charge. Comparing the buffer effects via buffer ionic strength rather than buffer concentration, we find that the buffers stabilize DNA in the order Tris > cacodylate > phosphate > citrate.


Asunto(s)
Ácido Cacodílico , Sales (Química) , Tampones (Química) , Ácido Cacodílico/química , ADN/química , Electrólitos , Fosfatos/química , Citratos , Concentración de Iones de Hidrógeno
3.
J Inorg Biochem ; 234: 111872, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653955

RESUMEN

We examine Hofmeister specific ion effects of electrolytes added to protein solution under conditions minimizing electrostatic attraction between cations and positively charged protein. Hemoglobin (Hb) in aqueous solution at the denaturing pH = 2.7 is investigated in the presence of several metal chlorides, along with sodium and potassium bromides, iodides and thiocyanates, using electrospray ionization mass spectrometry (ESI-MS). Salt concentration was varied to maximize peak intensity and bell-shaped profile in the ESI-MS spectrum. The α-chain of myoglobin is identified as the main pattern of the ESI-MS spectra in all Hb-salt systems. Both peak intensity and quality of the bell-shaped profile of the protein spectrum decrease in the cation order: K+ > > Mg2+ > Li+ > > Na+ > Ca2+ ≈ Cs+ > Rb+ for Hb-Metal Chloride systems, and decrease in the anion order: Cl- > Br- > I- > SCN- for systems of both Hb-NaX and Hb-KX salts. To quantify salt addition effects two Hofmeister specific electrolyte parameters HS, and PS are proposed. HS is the mean (Hb-salt)/Hb peak intensity ratio, measured for the nine peaks used for ESI-MS spectra deconvolution, taken at the same m/z values of the Hb profile. PS is the ratio between HS standard deviation and HS, and provides a specific perturbation parameter measuring the loss of protein structure. These two Hofmeister parameters give clear evidence of the effects induced either by KCl, MgCl2 and LiCl that enhance protein peak intensity, or by NaBr, NaI, NaSCN and KSCN that induce the protein fragmentation, due to electrolyte-mediated dissociation.


Asunto(s)
Electrólitos , Espectrometría de Masa por Ionización de Electrospray , Cationes , Cloruros , Hemoglobinas , Metales , Mioglobina/química , Sodio/química , Cloruro de Sodio , Espectrometría de Masa por Ionización de Electrospray/métodos
4.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628232

RESUMEN

Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.


Asunto(s)
Óxidos , Colorantes de Rosanilina , Catálisis , Oxidación-Reducción , Óxidos/química
5.
Phys Chem Chem Phys ; 24(11): 6544-6551, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35260871

RESUMEN

Buffer solutions do not simply regulate pH, but also change the properties of protein molecules. The zeta potential of lysozyme varies significantly at the same buffer concentration, in the order Tris > phosphate > citrate, with citrate even inverting the zeta potential, usually positive at pH 7.15, to a negative value. This buffer-specific effect is a special case of the Hofmeister effect. Here we present a theoretical model of these buffer-specific effects using a Poisson-Boltzmann description of the buffer solution, modified to include dispersion forces of all ions interacting with the lysozyme surface. Dispersion coefficients are determined from quantum chemical polarizabilites calculated for each ion for tris, phosphate, and citrate buffer solutions. The lysozyme surface charge is controlled by charge regulation of carboxylate and amine sites of the component amino acids. The theoretical model satisfactorily reproduces experimental zeta potentials, including change of sign with citrate, when hydration of small cosmotropic ions (Na+, H+, OH-) is included.


Asunto(s)
Modelos Teóricos , Proteínas , Concentración de Iones de Hidrógeno , Iones/química , Proteínas/química
6.
J Phys Chem Lett ; 11(16): 6805-6811, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32787211

RESUMEN

BSA and lysozyme molecular motion at pH 7.15 is buffer-specific. Adsorption of buffer ions on protein surfaces modulates the protein surface charge and thus protein-protein interactions. Interactions were estimated by means of the interaction parameter kD obtained from plots of diffusion coefficients at different protein concentrations (Dapp = D0[1 + kDCprotein]) via dynamic light scattering and nuclear magnetic resonance. The obtained results agree with recent findings confirming doubts regarding the validity of the Henderson-Hasselbalch equation, which has traditionally provided a basis for understanding pH buffers of primary importance in solution chemistry, electrochemistry, and biochemistry.


Asunto(s)
Muramidasa/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Tampones (Química) , Bovinos , Pollos , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Muramidasa/química , Fosfatos/química , Unión Proteica , Multimerización de Proteína , Albúmina Sérica Bovina/química , Electricidad Estática , Trometamina/química
7.
J Phys Chem B ; 124(15): 3103-3113, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32208624

RESUMEN

In view of the vital role of water, exact knowledge of its dielectric function over a large frequency range is important. We report on currently available measurements of the dielectric function of water at room temperature (25 °C) across the full spectrum: microwave, IR, UV, and X-ray (up to 100 eV). We parameterize the complex dielectric function of water with two Debye (microwave) oscillators and high resolution of IR and UV/X-ray oscillators. We also report dielectric parameters for ice-cold water with a microwave/IR spectrum measured at 0.4 °C, while taking the UV spectrum at 25 °C (assuming negligible temperature dependence in UV). We employ van der Waals dispersion interactions to contrast our model of ice-cold water with earlier models. Air bubbles in water and dissolved gas molecules show attraction toward interfaces rather than repulsion. The van der Waals interaction promotes complete freezing rather than supporting a thin layer of water on ice. We infer that premelting is driven by charge and ion adsorption. Density-based extrapolation from warm to cold water of the dielectric function is satisfactory in microwave but poor (40% error) at IR frequencies.

8.
Phys Chem Chem Phys ; 21(38): 21296-21304, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31549124

RESUMEN

We present a theory for Casimir-Polder forces acting on greenhouse gas molecules dissolved in a thin water film. Such a nano-sized film has been predicted to arise on the surface of melting ice as stabilized by repulsive Lifshitz forces. We show that different models for the effective polarisability of greenhouse gas molecules in water lead to different predictions for how Casimir-Polder forces influence their extractions from the melting ice surface. For instance, in the most intricate model of a finite-sized molecule inside a cavity, dispersion potentials push the methane molecules towards the ice surface whereas the oxygen typically will be attracted towards the closest interface (ice or air). Previous models for effective polarisability had suggested that O2 would also be pushed towards the ice surface. Release of greenhouse gas molecules from the surface of melting ice can potentially influence climate greenhouse effects. With this model, we show that some molecules cannot escape from water as single molecules. Due to the contradiction of the results and the escape dynamics of gases from water, we extended the models to describe bubble filled with several molecules increasing their buoyancy force.

9.
J Chem Phys ; 151(2): 024701, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31301724

RESUMEN

We resolve a thermodynamic inconsistency in previous theoretical descriptions of the free energy of chemisorption (charge regulation) under conditions where nonelectrostatic physisorption is included, as applied to surface forces and particle-particle interactions. We clarify the role of nonelectrostatic ion physisorption energies and show that a term previously thought to represent physisorbed ion concentrations (activities) should instead be interpreted as a "partial ion activity" based solely on the electrostatic physisorption energy and bulk concentration, or alternatively on the nonelectrostatic physisorption energy and surface concentration. Second, the chemisorption energy must be understood as the change in chemical potential after subtracting the electrostatic energy, not subtracting the physisorption energy. Consequently, a previously reported specific ion nonelectrostatic physisorption contribution to the chemisorption free energy is annulled. We also report a correction to the calculation of surface charge. The distinction in "partial ion activity" evaluated from bulk concentration or from surface concentration opens a way to study nonequilibrium forces where chemisorption is in equilibrium with physisorbed ions but not in equilibrium with bulk ions, e.g., by a jump in ion concentrations.

10.
Soft Matter ; 13(47): 8910-8921, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29143037

RESUMEN

Extensive research into the surface forces between hydrophobic surfaces has produced experimentally measured interaction forces that vary widely in range and in magnitude. This variability is attributed to interference from surface nanobubbles and the nature of the hydrophobic surface. Whilst the effects of nanobubbles are now recognised and can be addressed, the precise nature of the surface remains a confounding factor in measurements between hydrophobic surfaces. Here we show that a monolayer coating with hydrophobic properties is formed by exposing metal oxide surfaces to palmitic acid vapour. Surface forces measured between these smooth hydrophobic surfaces exhibited an exponential attraction. Neither patchy surface charges, nor surface nanobubbles could explain the measured forces. However, the observed interaction may be explained by the interaction of a single patch of bilayered palmitic acid molecules interacting with an exposed patch of the hafnia surface. Such an interaction is consistent with the observed exponential nature of the attraction and the agreement between the measured decay of the exponential attraction with the Debye length of the solution.

11.
J Phys Chem A ; 121(51): 9742-9751, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29185741

RESUMEN

Theories for the effective polarizability of a small particle in a medium are presented using different levels of approximation: we consider the virtual cavity, real cavity, and the hard-sphere models as well as a continuous interpolation of the latter two. We present the respective hard-sphere and cavity radii as obtained from density-functional simulations as well as the resulting effective polarizabilities at discrete Matsubara frequencies. This enables us to account for macroscopic media in van der Waals interactions between molecules in water and their Casimir-Polder interaction with an interface.

12.
J Phys Chem B ; 121(26): 6442-6453, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28598621

RESUMEN

The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

13.
Interface Focus ; 7(4): 20160137, 2017 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630674

RESUMEN

A theoretical model of haemoglobin is presented to explain an anomalous cationic Hofmeister effect observed in protein aggregation. The model quantifies competing proposed mechanisms of non-electrostatic physisorption and chemisorption. Non-electrostatic physisorption is stronger for larger, more polarizable ions with a Hofmeister series Li+< K+< Cs+. Chemisorption at carboxylate groups is stronger for smaller kosmotropic ions, with the reverse series Li+ > K+ > Cs+. We assess aggregation using second virial coefficients calculated from theoretical protein-protein interaction energies. Taking Cs+ to not chemisorb, comparison with experiment yields mildly repulsive cation-carboxylate binding energies of 0.48 kBT for Li+ and 3.0 kBT for K+. Aggregation behaviour is predominantly controlled by short-range protein interactions. Overall, adsorption of the K+ ion in the middle of the Hofmeister series is stronger than ions at either extreme since it includes contributions from both physisorption and chemisorption. This results in stronger attractive forces and greater aggregation with K+, leading to the non-conventional Hofmeister series K+ > Cs+ ≈ Li+.

14.
Phys Chem Chem Phys ; 18(10): 7483-9, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26902661

RESUMEN

Using first principles calculations, the analysis of the dielectric properties of amorphous SiO2 (am-SiO2) was performed. We found that the am-SiO2 properties are volume dependent, and the dependence is mainly induced by the variation of nanoporosity at the atomic scale. In particular, both ionic and electronic contributions to the static dielectric constants are functions of volume with clear trends. Moreover, using the unique parameterization of the dielectric function provided in this work, we predict dielectric functions at imaginary frequencies of different SiO2 polymorphs having similar band gap energies.

15.
J Chem Phys ; 142(13): 134707, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854258

RESUMEN

The relationship between surface charge and surface potential at the solid-liquid interface is often determined by a charge regulation process, the chemisorption of a potential determining ion such as H(+). A subtle ion-specific effect can be observed when other ions compete with the primary potential determining ion to bind to a surface site. Site competition may involve alternative ions competing for a first binding site, e.g., metals ions competing with H(+) to bind to a negatively charged oxide or carboxyl site. Second-binding sites with site competition may also be found, including amphoteric OH2 (+) sites, or anion binding to amine groups. In this work, a general theoretical model is developed to describe the competitive adsorption of ions at surface sites. Applied to the calculation of forces, the theory predicts a 20% increase in repulsion between titania surfaces in 1 mM NaCl, and a 25% reduction in repulsion between silica surfaces in 0.1M NaCl compared to calculations neglecting ion site competition.

16.
Artículo en Inglés | MEDLINE | ID: mdl-25314410

RESUMEN

The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO(2) and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.


Asunto(s)
Agua/química , Adsorción , Hexanos/química , Metano/química , Modelos Teóricos , Dióxido de Silicio/química , Propiedades de Superficie
17.
Phys Chem Chem Phys ; 16(40): 22014-27, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25205066

RESUMEN

The calculation of ion-ion interactions in water is a problem of long standing importance. Modelling these interactions is a prerequisite to explaining Hofmeister (specific ion) effects. We here generalize our solvation model of ions to calculate the free energy of two ions in water as a function of separation. The same procedure has previously been applied to calculate ion interactions with the air-water interface successfully. The Conductor like Screening Model (COSMO) is used. This treats the ions on a quantum mechanical level and calculates numerically the electrostatic response of the surrounding solvent. Estimates of the change in the cavity formation energy and the change in the ion-water dispersion energy as the ions approach are included separately. The calculated interaction potentials are too attractive and this is a significant issue. However, they do reproduce the affinity of similarly sized ions for each other, which is a crucial property of these potentials. They are also oscillatory, another important property. We normalize the potentials to reduce the over-attraction, and good correlation with experimental values is achieved. We identify the driving contributions to this like-prefers-like behaviour. We then put forward a plausible hypothesis for the over-attraction of the potentials. An agreeable feature of our approach is that it does not rely on salt specific parameters deliberately adjusted to reproduce experimental values.


Asunto(s)
Agua/química , Iones/química , Modelos Moleculares , Teoría Cuántica , Solventes/química
18.
J Phys Chem B ; 118(29): 8700-10, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-24984239

RESUMEN

Explaining and predicting the distribution of ions at the air-water interface has been a central challenge of physical chemistry for nearly a century. In essence, the problem amounts to calculating the change in the solvation energy of an ion as it approaches the interface. Here, we generalize our recently developed model of ionic solvation energies to calculate this interaction. The change in the Born energy as well as the static polarization response of the ion is included by using the conductor-like screening model (COSMO), which treats the ions quantum mechanically. Approximate expressions for the dispersion repulsion, cavity attraction, and surface potential contributions are also included. This model reproduces the surface tensions of electrolyte solutions and is consistent with ab initio molecular dynamics (MD) simulation. The model provides clear physical insight into iodide's adsorption. Unlike alternative models, no parameters are deliberately adjusted to reproduce surface tensions, and all of the important contributions to the interactions are included. Solving this problem has important direct implications for atmospheric chemistry and bubble properties. It also has important indirect implications for the more complex interactions of ions with protein and mineral surfaces. These play a fundamental role in a vast number of biological and industrial processes. The model is conceptually simple and has low computational demand, which facilitates its extension to these important applications.

19.
J Chem Phys ; 140(16): 164701, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24784293

RESUMEN

A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between "true zero," where the separation between the average centres of each surface is zero, and "apparent zero," defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

20.
J Colloid Interface Sci ; 427: 67-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24565279

RESUMEN

A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA