Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 57(31): 4675-4689, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30004690

RESUMEN

Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 µg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene.


Asunto(s)
Bacterias/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Humanos , Fosforilación , Estructura Secundaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Familia-src Quinasas/metabolismo
2.
J Clin Invest ; 126(9): 3526-40, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27482884

RESUMEN

Genomic studies have linked mTORC1 pathway-activating mutations with exceptional response to treatment with allosteric inhibitors of mTORC1 called rapalogs. Rapalogs are approved for selected cancer types, including kidney and breast cancers. Here, we used sequencing data from 22 human kidney cancer cases to identify the activating mechanisms conferred by mTOR mutations observed in human cancers and advance precision therapeutics. mTOR mutations that clustered in focal adhesion kinase targeting domain (FAT) and kinase domains enhanced mTORC1 kinase activity, decreased nutrient reliance, and increased cell size. We identified 3 distinct mechanisms of hyperactivation, including reduced binding to DEP domain-containing MTOR-interacting protein (DEPTOR), resistance to regulatory associated protein of mTOR-mediated (RAPTOR-mediated) suppression, and altered kinase kinetics. Of the 28 mTOR double mutants, activating mutations could be divided into 6 complementation groups, resulting in synergistic Rag- and Ras homolog enriched in brain-independent (RHEB-independent) mTORC1 activation. mTOR mutants were resistant to DNA damage-inducible transcript 1-mediated (REDD1-mediated) inhibition, confirming that activating mutations can bypass the negative feedback pathway formed between HIF1 and mTORC1 in the absence of von Hippel-Lindau (VHL) tumor suppressor expression. Moreover, VHL-deficient cells that expressed activating mTOR mutants grew tumors that were sensitive to rapamycin treatment. These data may explain the high incidence of mTOR mutations observed in clear cell kidney cancer, where VHL loss and HIF activation is pathognomonic. Our study provides mechanistic and therapeutic insights concerning mTOR mutations in human diseases.


Asunto(s)
Neoplasias Renales/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Daño del ADN , Femenino , Genoma Humano , Humanos , Neoplasias Renales/tratamiento farmacológico , Cinética , Masculino , Ratones , Ratones SCID , Simulación de Dinámica Molecular , Mutación , Mutación Missense , Plásmidos/metabolismo , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
3.
PLoS Comput Biol ; 12(6): e1004728, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27337644

RESUMEN

The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase family, using all available kinase catalytic domain structures from any organism as structural templates. Ensembler is free and open source software licensed under the GNU General Public License (GPL) v2. It is compatible with Linux and OS X. The latest release can be installed via the conda package manager, and the latest source can be downloaded from https://github.com/choderalab/ensembler.


Asunto(s)
Algoritmos , Modelos Químicos , Simulación del Acoplamiento Molecular/métodos , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/ultraestructura , Análisis de Secuencia de Proteína/métodos , Sitios de Unión , Simulación por Computador , Activación Enzimática , Ensayos Analíticos de Alto Rendimiento/métodos , Unión Proteica , Programas Informáticos
4.
Structure ; 23(3): 584-597, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25703376

RESUMEN

The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different environments. We have combined experimental data from X-ray crystallography, nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and lipidomics to build a model of the intact influenza A virion. This is the basis of microsecond-scale coarse-grained molecular dynamics simulations of the virion, providing simulations at different temperatures and with varying lipid compositions. The presence of the Forssman glycolipid alters a number of biophysical properties of the virion, resulting in reduced mobility of bilayer lipid and protein species. Reduced mobility in the virion membrane may confer physical robustness to changes in environmental conditions. Our simulations indicate that viral spike proteins do not aggregate and thus are competent for multivalent immunoglobulin G interactions.


Asunto(s)
Virus de la Influenza A/ultraestructura , Virión/ultraestructura , Difusión , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/química , Lípidos/química , Simulación de Dinámica Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores Virales/química , Virión/química , Acoplamiento Viral
5.
Structure ; 23(1): 68-79, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25482541

RESUMEN

Formins catalyze nucleation and growth of actin filaments. Here, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interaction energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Citoesqueleto de Actina/química , Actinas/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae
6.
PLoS Comput Biol ; 9(4): e1003034, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23592976

RESUMEN

The association of hemagglutinin (HA) with lipid rafts in the plasma membrane is an important feature of the assembly process of influenza virus A. Lipid rafts are thought to be small, fluctuating patches of membrane enriched in saturated phospholipids, sphingolipids, cholesterol and certain types of protein. However, raft-associating transmembrane (TM) proteins generally partition into Ld domains in model membranes, which are enriched in unsaturated lipids and depleted in saturated lipids and cholesterol. The reason for this apparent disparity in behavior is unclear, but model membranes differ from the plasma membrane in a number of ways. In particular, the higher protein concentration in the plasma membrane may influence the partitioning of membrane proteins for rafts. To investigate the effect of high local protein concentration, we have conducted coarse-grained molecular dynamics (CG MD) simulations of HA clusters in domain-forming bilayers. During the simulations, we observed a continuous increase in the proportion of raft-type lipids (saturated phospholipids and cholesterol) within the area of membrane spanned by the protein cluster. Lateral diffusion of unsaturated lipids was significantly attenuated within the cluster, while saturated lipids were relatively unaffected. On this basis, we suggest a possible explanation for the change in lipid distribution, namely that steric crowding by the slow-diffusing proteins increases the chemical potential for unsaturated lipids within the cluster region. We therefore suggest that a local aggregation of HA can be sufficient to drive association of the protein with raft-type lipids. This may also represent a general mechanism for the targeting of TM proteins to rafts in the plasma membrane, which is of functional importance in a wide range of cellular processes.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H3N8 del Virus de la Influenza A/metabolismo , Microdominios de Membrana/química , Algoritmos , Membrana Celular/metabolismo , Biología Computacional/métodos , Difusión , Membrana Dobles de Lípidos , Lípidos/química , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína
7.
J Phys Chem B ; 116(46): 13713-21, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23094791

RESUMEN

Fusion peptides of type I fusion glycoproteins are structural elements of several enveloped viruses which enable the fusion between host and virus membranes. It is generally suggested that these peptides can promote the early fusion steps by inducing membrane curvature and that they adopt a tilted helical conformation in membranes. Although this property has been the subject of several experimental and in silico studies, an extensive sampling of the membrane peptide interaction has not yet been done. In this study, we performed coarse-grained molecular dynamic simulations in which the lipid bilayer self-assembles around the peptide. The simulations indicate that the SIV fusion peptide can adopt two different orientations in a DPPC bilayer, a major population which adopts a tilted interfacial orientation and a minor population which is perpendicular to the bilayer. The simulations also indicate that for the SIV mutant that does not induce fusion in vitro the tilt is abolished.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Virus de la Inmunodeficiencia de los Simios/química , Proteínas Virales de Fusión/química , Membrana Dobles de Lípidos/química , Modelos Biológicos
8.
J Phys Chem B ; 116(29): 8485-93, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22380536

RESUMEN

The antimicrobial peptide maculatin 1.1 (M1.1) is an amphipathic α-helix that permeabilizes lipid bilayers. In coarse-grained molecular dynamics (CG MD) simulations, M1.1 has previously been shown to form membrane-spanning aggregates in DPPC bilayers. In this study, a simple multiscale methodology has been applied to allow sampling of important regions of the free energy surface at higher resolution. Thus, by back-converting the CG configurations to atomistic representations, it is shown that water is able to permeate through the M1.1 aggregates. Investigation of aggregate stoichiometry shows that at least six peptides are required for water permeation. The aggregates are dynamically disordered structures, and water flux occurs through irregular, fluctuating channels. The results are discussed in relation to experimental data and other simulations of antimicrobial peptides.


Asunto(s)
Proteínas Anfibias/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Anuros/metabolismo , Membrana Dobles de Lípidos/metabolismo , Agua/metabolismo , Proteínas Anfibias/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Simulación de Dinámica Molecular , Permeabilidad , Estructura Secundaria de Proteína , Termodinámica
9.
Biophys J ; 101(3): 691-9, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21806937

RESUMEN

Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or ß-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model ß-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Multimerización de Proteína , Secuencia de Aminoácidos , Membrana Celular/química , Difusión , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Datos de Secuencia Molecular , Porosidad , Estructura Secundaria de Proteína , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
10.
J Med Chem ; 54(7): 2183-95, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21381763

RESUMEN

A series of potent phthalazinone-based human H(1) and H(3) bivalent histamine receptor antagonists, suitable for intranasal administration for the potential treatment of allergic rhinitis, were identified. Blockade of H(3) receptors is thought to improve efficacy on nasal congestion, a symptom of allergic rhinitis that is currently not treated by current antihistamines. Two analogues (56a and 56b) had slightly lower H(1) potency (pA(2) 9.1 and 8.9, respectively, vs 9.7 for the clinical gold-standard azelastine, and H(3) potency (pK(i) 9.6 and 9.5, respectively, vs 6.8 for azelastine). Compound 56a had longer duration of action than azelastine, low brain penetration, and low oral bioavailability, which coupled with the predicted low clinical dose, should limit the potential of engaging CNS-related side-effects associated with H(1) or H(3) antagonism.


Asunto(s)
Descubrimiento de Drogas/métodos , Ftalazinas/administración & dosificación , Ftalazinas/farmacología , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H3/metabolismo , Rinitis/tratamiento farmacológico , Administración Intranasal , Administración Oral , Antagonistas de los Receptores Histamínicos H1/administración & dosificación , Antagonistas de los Receptores Histamínicos H1/química , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Antagonistas de los Receptores Histamínicos H3/administración & dosificación , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/farmacología , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Humanos , Modelos Moleculares , Ftalazinas/química , Ftalazinas/uso terapéutico , Conformación Proteica , Receptores Histamínicos H1/química
11.
Biophys J ; 95(8): 3802-15, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18641064

RESUMEN

Maculatin 1.1 (M1.1) is a membrane-active antimicrobial peptide (AMP) from an Australian tree frog that forms a kinked amphipathic alpha-helix in the presence of a lipid bilayer or bilayer-mimetic environment. To help elucidate its mechanism of membrane-lytic activity, we performed a total of approximately 8 micros of coarse-grained molecular dynamics (CG-MD) simulations of M1.1 in the presence of zwitterionic phospholipid membranes. Several systems were simulated in which the peptide/lipid ratio was varied. At a low peptide/lipid ratio, M1.1 adopted a kinked, membrane-interfacial location, consistent with experiment. At higher peptide/lipid ratios, we observed spontaneous, cooperative membrane insertion of M1.1 peptide aggregates. The minimum size for formation of a transmembrane (TM) aggregate was just four peptides. The absence of a simple and well-defined central channel, along with the exclusion of lipid headgroups from the aggregates, suggests that a pore-like model is an unlikely explanation for the mechanism of membrane lysis by M1.1. We also performed an extended 1.25 micros simulation of the permeabilization of a complete liposome by multiple peptides. Consistent with the simpler bilayer simulations, formation of monomeric interfacial peptides and TM peptide clusters was observed. In contrast, major structural changes were observed in the vesicle membrane, implicating induced membrane curvature in the mechanism of active antimicrobial peptide lysis. This contrasted with the behavior of the nonpore-forming model peptide WALP23, which inserted into the vesicle to form extended clusters of TM alpha-helices with relatively little perturbation of bilayer properties.


Asunto(s)
Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/química , Simulación por Computador , Membrana Dobles de Lípidos/química , Modelos Moleculares , Animales , Anuros , Liposomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA