Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2023): 20240239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808445

RESUMEN

The ocean's midwater is a uniquely challenging yet predictable and simple visual environment. The need to see without being seen in this dim, open habitat has led to extraordinary visual adaptations. To understand these adaptations, we compared the morphological and functional differences between the eyes of three hyperiid amphipods-Hyperia galba, Streetsia challengeri and Phronima sedentaria. Combining micro-CT data with computational modelling, we mapped visual field topography and predicted detection distances for visual targets viewed in different directions through mesopelagic depths. Hyperia's eyes provide a wide visual field optimized for spatial vision over short distances, while Phronima's and Streetsia's eyes have the potential to achieve greater sensitivity and longer detection distances using spatial summation. These improvements come at the cost of smaller visual fields, but this loss is compensated for by a second pair of eyes in Phronima and by behaviour in Streetsia. The need to improve sensitivity while minimizing visible eye size to maintain crypsis has likely driven the evolution of hyperiid eye diversity. Our results provide an integrative look at how these elusive animals have adapted to the unique visual challenges of the mesopelagic.


Asunto(s)
Anfípodos , Animales , Anfípodos/fisiología , Anfípodos/anatomía & histología , Ecosistema , Campos Visuales , Ojo/anatomía & histología , Visión Ocular , Microtomografía por Rayos X
2.
J Exp Biol ; 226(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732387

RESUMEN

Most animals rely on visual information for a variety of everyday tasks. The information available to a visual system depends in part on its spatial resolving power and contrast sensitivity. Because of their competing demands for physical space within an eye, these traits cannot simultaneously be improved without increasing overall eye size. The contrast sensitivity function is an integrated measure of visual performance that measures both resolution and contrast sensitivity. Its measurement helps us identify how different species have made a trade-off between contrast sensitivity and spatial resolution. It further allows us to identify the evolutionary drivers of sensory processing and visually mediated behaviour. Here, we measured the contrast sensitivity function of the fiddler crab Gelasimus dampieri using its optokinetic responses to wide-field moving sinusoidal intensity gratings of different orientations, spatial frequencies, contrasts and speeds. We further tested whether the behavioural state of the crabs (i.e. whether crabs are actively walking or not) affects their optokinetic gain and contrast sensitivity. Our results from a group of five crabs suggest a minimum perceived contrast of 6% and a horizontal and vertical visual acuity of 0.4 cyc deg-1 and 0.28 cyc deg-1, respectively, in the crabs' region of maximum optomotor sensitivity. Optokinetic gain increased in moving crabs compared with restrained crabs, adding another example of the importance of naturalistic approaches when studying the performance of animals.


Asunto(s)
Braquiuros , Sensibilidad de Contraste , Animales , Braquiuros/fisiología , Agudeza Visual
3.
PLoS Comput Biol ; 18(10): e1010545, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36251706

RESUMEN

Vision in the midwater of the open ocean requires animals to perform visual tasks quite unlike those of any other environment. These tasks consist of detecting small, low contrast objects and point sources against a relatively dim and uniform background. Deep-sea animals have evolved many extraordinary visual adaptations to perform these tasks. Linking eye anatomy to specific selective pressures, however, is challenging, not least because of the many difficulties of studying deep-sea animals. Computational modelling of vision, based on detailed morphological reconstructions of animal eyes, along with underwater optics, offers a chance to understand the specific visual capabilities of individual visual systems. Prior to the work presented here, comprehensive models for apposition compound eyes in the mesopelagic, the dominant eye form of crustaceans, were lacking. We adapted a model developed for single-lens eyes and used it to examine how different parameters affect the model's ability to detect point sources and extended objects. This new model also allowed us to examine spatial summation as a means to improve visual performance. Our results identify a trade-off between increased depth range over which eyes function effectively and increased distance at which extended objects can be detected. This trade-off is driven by the size of the ommatidial acceptance angle. We also show that if neighbouring ommatidia have overlapping receptive fields, spatial summation helps with all detection tasks, including the detection of bioluminescent point sources. By applying our model to the apposition compound eyes of Phronima, a mesopelagic hyperiid amphipod, we show that the specialisations of the large medial eyes of Phronima improve both the detection of point sources and of extended objects. The medial eyes outperformed the lateral eyes at every modelled detection task. We suggest that the small visual field size of Phronima's medial eyes and the strong asymmetry between the medial and lateral eyes reflect Phronima's need for effective vision across a large depth range and its habit of living inside a barrel. The barrel's narrow aperture limits the usefulness of a large visual field and has allowed a strong asymmetry between the medial and lateral eyes. The model provides a useful tool for future investigations into the visual abilities of apposition compound eyes in the deep sea.


Asunto(s)
Anfípodos , Animales , Simulación por Computador , Ojo , Visión Ocular , Campos Visuales
4.
Curr Biol ; 32(23): 5159-5164.e4, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36306788

RESUMEN

Predation risk imposes strong selection pressures on visual systems to quickly and accurately identify the position and movement of potential predators.1,2 Many invertebrates and other small animals, however, have limited capacity for distance perception due to their low spatial resolution and closely situated eyes.3,4 Consequently, they often rely on simplified decision criteria, essentially heuristics or "rules of thumb", to make decisions. The visual cues animals use to make escape decisions are surprisingly consistent, especially among arthropods, with the timing of escape commonly triggered by size-dependent visual cues such as angular size or angular size increment.5,6,7,8,9,10 Angular size, however, confuses predator size and distance and provides no information about the speed of the attack. Here, we show that fiddler crabs (Gelasimus dampieri) are unique among the arthropods studied to date as they timed their escape response based on the speed of an object's angular expansion. The crabs responded reliably by running away from visual stimuli that expanded at approximately 1.7 degrees/s, irrespective of stimulus size, speed, or its initial distance from the crabs. Though the threshold expansion speed was consistent across different stimulus conditions, we found that the escape timing was modulated by the elevation at which the stimulus approached, suggesting that other risk factors can bias the expansion speed threshold. The results suggest that the visual escape cues used by arthropods are less conserved than previously thought and that lifestyle and environment are significant drivers determining the escape cues used by different species.


Asunto(s)
Conducta Animal , Braquiuros , Percepción Visual
5.
Sci Rep ; 12(1): 10022, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705656

RESUMEN

Selective attention, the ability to focus on a specific stimulus and suppress distractions, plays a fundamental role for animals in many contexts, such as mating, feeding, and predation. Within natural environments, animals are often confronted with multiple stimuli of potential importance. Such a situation significantly complicates the decision-making process and imposes conflicting information on neural systems. In the context of predation, selectively attending to one of multiple threats is one possible solution. However, how animals make such escape decisions is rarely studied. A previous field study on the fiddler crab, Gelasimus dampieri, provided evidence of selective attention in the context of escape decisions. To identify the underlying mechanisms that guide their escape decisions, we measured the crabs' behavioural and neural responses to either a single, or two simultaneously approaching looming stimuli. The two stimuli were either identical or differed in contrast to represent different levels of threat certainty. Although our behavioural data provides some evidence that crabs perceive signals from both stimuli, we show that both the crabs and their looming-sensitive neurons almost exclusively respond to only one of two simultaneous threats. The crabs' body orientation played an important role in their decision about which stimulus to run away from. When faced with two stimuli of differing contrasts, both neurons and crabs were much more likely to respond to the stimulus with the higher contrast. Our data provides evidence that the crabs' looming-sensitive neurons play an important part in the mechanism that drives their selective attention in the context of predation. Our results support previous suggestions that the crabs' escape direction is calculated downstream of their looming-sensitive neurons by means of a population vector of the looming sensitive neuronal ensemble.


Asunto(s)
Braquiuros , Animales , Atención , Braquiuros/fisiología , Reacción de Fuga/fisiología , Neuronas/fisiología , Conducta Predatoria
6.
Front Neuroanat ; 14: 560534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324175

RESUMEN

There is currently a limited understanding of the morphological and functional organization of the olfactory system in cartilaginous fishes, particularly when compared to bony fishes and terrestrial vertebrates. In this fish group, there is a clear paucity of information on the characterization, density, and distribution of olfactory receptor neurons (ORNs) within the sensory olfactory epithelium lining the paired olfactory rosettes, and their functional implications with respect to the hydrodynamics of incurrent water flow into the nares. This imaging study examines the brownbanded bamboo shark Chiloscyllium punctatum (Elasmobranchii) and combines immunohistochemical labeling using antisera raised against five G-protein α-subunits (Gαs/olf, Gαq/ 11 / 14, Gαi- 1 / 2 / 3, Gαi- 3, Gα o ) with light and electron microscopy, to characterize the morphological ORN types present. Three main ORNs ("long", "microvillous" and "crypt-like") are confirmed and up to three additional microvilli-bearing types are also described; "Kappe-like" (potential or homologous "Kappe" as in teleosts), "pear-shaped" and "teardrop-shaped" cells. These morphotypes will need to be confirmed molecularly in the future. Using X-ray diffusible iodine-based contrast-enhanced computed tomography (diceCT), high-resolution scans of the olfactory rosettes, olfactory bulbs (OBs), peduncles, and telencephalon reveal a lateral segregation of primary olfactory inputs within the OBs, with distinct medial and lateral clusters of glomeruli, suggesting a potential somatotopic organization. However, most ORN morphotypes are found to be ubiquitously distributed within the medial and lateral regions of the olfactory rosette, with at least three microvilli-bearing ORNs labeled with anti-Gα o found in significantly higher densities in lateral lamellae [in lateral lamellae] and on the anterior portion of lamellae (facing the olfactory cavity). These microvilli-bearing ORN morphotypes (microvillous, "Kappe-like," "pear-shaped," and "teardrop-shaped") are the most abundant across the olfactory rosette of this species, while ciliated ORNs are less common and crypt cells are rare. Spatial simulations of the fluid dynamics of the incurrent water flow into the nares and within the olfactory cavities indicate that the high densities of microvilli-bearing ORNs located within the lateral region of the rosette are important for sampling incoming odorants during swimming and may determine subsequent tracking behavior.

7.
Brain Behav Evol ; 95(3-4): 139-161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33171468

RESUMEN

The volume of the olfactory bulbs (OBs) relative to the brain has been used previously as a proxy for olfactory capabilities in many vertebrate taxa, including fishes. Although this gross approach has predictive power, a more accurate assessment of the number of afferent olfactory inputs and the convergence of this information at the level of the telencephalon is critical to our understanding of the role of olfaction in the behaviour of fishes. In this study, we used transmission electron microscopy to assess the number of first-order axons within the olfactory nerve (ON) and the number of second-order axons in the olfactory peduncle (OP) in established model species within cartilaginous (brownbanded bamboo shark, Chiloscyllium punctatum [CP]) and bony (common goldfish, Carassius auratus [CA]) fishes. The total number of axons varied from a mean of 18.12 ± 7.50 million in the ON to a mean of 0.38 ± 0.21 million in the OP of CP, versus 0.48 ± 0.16 million in the ON and 0.09 ± 0.02 million in the OP of CA. This resulted in a convergence ratio of approximately 50:1 and 5:1, respectively, for these two species. Based on astroglial ensheathing, axon type (unmyelinated [UM] and myelinated [M]) and axon size, we found no differentiated tracts in the OP of CP, whereas a lateral and a medial tract (both of which could be subdivided into two bundles or areas) were identified for CA, as previously described. Linear regression analyses revealed significant differences not only in axon density between species and locations (nerves and peduncles), but also in axon type and axon diameter (p < 0.05). However, UM axon diameter was larger in the OPs than in the nerve in both species (p = 0.005), with no significant differences in UM axon diameter in the ON (p = 0.06) between species. This study provides an in-depth analysis of the neuroanatomical organisation of the ascending olfactory pathway in two fish taxa and a quantitative anatomical comparison of the summation of olfactory information. Our results support the assertion that relative OB volume is a good indicator of the level of olfactory input and thereby a proxy for olfactory capabilities.


Asunto(s)
Axones/ultraestructura , Carpa Dorada/anatomía & histología , Bulbo Olfatorio/citología , Nervio Olfatorio/citología , Vías Olfatorias/citología , Tiburones/anatomía & histología , Animales , Microscopía Electrónica de Transmisión , Bulbo Olfatorio/ultraestructura , Corteza Olfatoria/citología , Nervio Olfatorio/ultraestructura , Vías Olfatorias/ultraestructura
8.
J Exp Biol ; 223(Pt 23)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33097568

RESUMEN

Colour signals, and the ability to detect them, are important for many animals and can be vital to their survival and fitness. Fiddler crabs use colour information to detect and recognise conspecifics, but their colour vision capabilities remain unclear. Many studies have attempted to measure their spectral sensitivity and identify contributing retinular cells, but the existing evidence is inconclusive. We used electroretinogram (ERG) measurements and intracellular recordings from retinular cells to estimate the spectral sensitivity of Gelasimus dampieri and to track diurnal changes in spectral sensitivity. G. dampieri has a broad spectral sensitivity and is most sensitive to wavelengths between 420 and 460 nm. Selective adaptation experiments uncovered an ultraviolet (UV) retinular cell with a peak sensitivity shorter than 360 nm. The species' spectral sensitivity above 400 nm is too broad to be fitted by a single visual pigment and using optical modelling, we provide evidence that at least two medium-wavelength sensitive (MWS) visual pigments are contained within a second blue-green sensitive retinular cell. We also found a ∼25 nm diurnal shift in spectral sensitivity towards longer wavelengths in the evening in both ERG and intracellular recordings. Whether the shift is caused by screening pigment migration or changes in opsin expression remains unclear, but the observation shows the diel dynamism of colour vision in this species. Together, these findings support the notion that G. dampieri possesses the minimum requirement for colour vision, with UV and blue/green receptors, and help to explain some of the inconsistent results of previous research.


Asunto(s)
Braquiuros , Visión de Colores , Animales , Electrorretinografía , Células Fotorreceptoras Retinianas Conos , Pigmentos Retinianos
9.
Brain Struct Funct ; 225(8): 2347-2375, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32870419

RESUMEN

The size (volume or mass) of the olfactory bulbs in relation to the whole brain has been used as a neuroanatomical proxy for olfactory capability in a range of vertebrates, including fishes. Here, we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test the value of this novel bioimaging technique for generating accurate measurements of the relative volume of the main olfactory brain areas (olfactory bulbs, peduncles, and telencephalon) and to describe the morphological organisation of the ascending olfactory pathway in model fish species from two taxa, the brownbanded bamboo shark Chiloscyllium punctatum and the common goldfish Carassius auratus. We also describe the arrangement of primary projections to the olfactory bulb and secondary projections to the telencephalon in both species. Our results identified substantially larger olfactory bulbs and telencephalon in C. punctatum compared to C. auratus (comprising approximately 5.2% vs. 1.8%, and 51.8% vs. 11.8% of the total brain volume, respectively), reflecting differences between taxa, but also possibly in the role of olfaction in the sensory ecology of these species. We identified segregated primary projections to the bulbs, associated with a compartmentalised olfactory bulb in C. punctatum, which supports previous findings in elasmobranch fishes. DiceCT imaging has been crucial for visualising differences in the morphological organisation of the olfactory system of both model species. We consider comparative neuroanatomical studies between representative species of both elasmobranch and teleost fish groups are fundamental to further our understanding of the evolution of the olfactory system in early vertebrates and the neural basis of olfactory abilities.


Asunto(s)
Bulbo Olfatorio/diagnóstico por imagen , Vías Olfatorias/diagnóstico por imagen , Olfato/fisiología , Telencéfalo/diagnóstico por imagen , Animales , Carpa Dorada , Tamaño de los Órganos , Tiburones , Especificidad de la Especie , Tomografía Computarizada por Rayos X/métodos
10.
J Fish Biol ; 97(5): 1401-1407, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32820821

RESUMEN

In 2011, the enigma of "mystery circles," small but complex underwater structures first observed by divers from southern Japan in 1995, was solved when a new species of pufferfish, white-spotted pufferfish (Torquigener albomaculosus Matsuura 2014), was identified as the responsible agent. To date these circles have been described only from Japan, where they are formed on a sandy seafloor in water depths less than 30 m. A survey of oil field infrastructure on the North West Shelf of Western Australia in 2018 using a remotely operated vehicle and hybrid autonomous underwater vehicle (HAUV) recorded a high-resolution video and bathymetric data of 21 circular formations with similar features to those described in Japan. The circles display dimensions and morphology like those described from Japan, but were observed in water depths between 129 and 137 m. The HAUV also recorded high-resolution photographs which captured a Torquigener sp. fish in the immediate vicinity of the circles. An additional circle and Torquigener sp. were observed in images collected by baited remote underwater stereo-video in a nearby location in 129 m depth. These circles are the first to be found in Australia. The pufferfish species responsible cannot be identified from images collected. Such a discovery not only generates intrigue and wonder among scientists and the general public but also provides an insight into the reproductive behaviour and evolution of pufferfish globally.


Asunto(s)
Comportamiento de Nidificación/fisiología , Tetraodontiformes/fisiología , Animales , Yacimiento de Petróleo y Gas , Grabación en Video , Australia Occidental
11.
Curr Biol ; 30(13): 2608-2615.e4, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32470360

RESUMEN

Snakes are descended from highly visual lizards [1] but have limited (probably dichromatic) color vision attributed to a dim-light lifestyle of early snakes [2-4]. The living species of front-fanged elapids, however, are ecologically very diverse, with ∼300 terrestrial species (cobras, taipans, etc.) and ∼60 fully marine sea snakes, plus eight independently marine, amphibious sea kraits [1]. Here, we investigate the evolution of spectral sensitivity in elapids by analyzing their opsin genes (which are responsible for sensitivity to UV and visible light), retinal photoreceptors, and ocular lenses. We found that sea snakes underwent rapid adaptive diversification of their visual pigments when compared with their terrestrial and amphibious relatives. The three opsins present in snakes (SWS1, LWS, and RH1) have evolved under positive selection in elapids, and in sea snakes they have undergone multiple shifts in spectral sensitivity toward the longer wavelengths that dominate below the sea surface. Several relatively distantly related Hydrophis sea snakes are polymorphic for shortwave sensitive visual pigment encoded by alleles of SWS1. This spectral site polymorphism is expected to confer expanded "UV-blue" spectral sensitivity and is estimated to have persisted twice as long as the predicted survival time for selectively neutral nuclear alleles. We suggest that this polymorphism is adaptively maintained across Hydrophis species via balancing selection, similarly to the LWS polymorphism that confers allelic trichromacy in some primates. Diving sea snakes thus appear to share parallel mechanisms of color vision diversification with fruit-eating primates.


Asunto(s)
Evolución Biológica , Elapidae/fisiología , Hydrophiidae/fisiología , Polimorfismo Genético , Percepción Visual , Alelos , Animales , Elapidae/genética , Evolución Molecular , Hydrophiidae/genética
12.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32471849

RESUMEN

Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.


Asunto(s)
Yodo , Animales , Encéfalo/diagnóstico por imagen , Medios de Contraste , Cabeza , Tomografía Computarizada por Rayos X
13.
J Exp Biol ; 223(Pt 1)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31822556

RESUMEN

Visual systems play a vital role in guiding the behaviour of animals. Understanding the visual information animals are able to acquire is therefore key to understanding their visually mediated decision making. Compound eyes, the dominant eye type in arthropods, are inherently low-resolution structures. Their ability to resolve spatial detail depends on sampling resolution (interommatidial angle) and the quality of ommatidial optics. Current techniques for estimating interommatidial angles are difficult, and generally require in vivo measurements. Here, we present a new method for estimating interommatidial angles based on the detailed analysis of 3D micro-computed tomography images of fixed samples. Using custom-made MATLAB software, we determined the optical axes of individual ommatidia and projected these axes into the 3D space around the animal. The combined viewing directions of all ommatidia, estimated from geometrical optics, allowed us to estimate interommatidial angles and map the animal's sampling resolution across its entire visual field. The resulting topographic representations of visual acuity match very closely the previously published data obtained from both fiddler and grapsid crabs. However, the new method provides additional detail that was not previously detectable and reveals that fiddler crabs, rather than having a single horizontal visual streak as is common in flat-world inhabitants, probably have two parallel streaks located just above and below the visual horizon. A key advantage of our approach is that it can be used on appropriately preserved specimens, allowing the technique to be applied to animals such as deep-sea crustaceans that are inaccessible or unsuitable for in vivo approaches.


Asunto(s)
Braquiuros/fisiología , Ojo Compuesto de los Artrópodos/fisiología , Agudeza Visual/fisiología , Microtomografía por Rayos X/métodos , Animales , Femenino , Masculino , Visión Ocular/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-31093738

RESUMEN

Gaze stabilization is a fundamental aspect of vision and almost all animals shift their eyes to compensate for any self-movement relative to the external environment. When it comes to mantis shrimp, however, the situation becomes complicated due to the complexity of their visual system and their range of eye movements. The stalked eyes of mantis shrimp can independently move left and right, and up and down, whilst simultaneously rotating about the axis of the eye stalks. Despite the large range of rotational freedom, mantis shrimp nevertheless show a stereotypical gaze stabilization response to horizontal motion of a wide-field, high-contrast stimulus. This response is often accompanied by pitch (up-down) and torsion (about the eye stalk) rotations which, surprisingly, have no effect on the performance of yaw (side-to-side) gaze stabilization. This unusual feature of mantis shrimp vision suggests that their neural circuitry for detecting motion is radially symmetric and immune to the confounding effects of torsional self-motion. In this work, we reinforce this finding, demonstrating that the yaw gaze stabilization response of the mantis shrimp is robust to the ambiguous motion cues arising from the motion of striped visual gratings in which the angle of a grating is offset from its direction of travel.


Asunto(s)
Movimientos Oculares/fisiología , Fijación Ocular/fisiología , Percepción de Movimiento/fisiología , Penaeidae/fisiología , Animales , Señales (Psicología)
15.
Mol Ecol ; 28(8): 2013-2028, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30767303

RESUMEN

Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.


Asunto(s)
Evolución Biológica , Hydrophiidae/fisiología , Fototaxis/fisiología , Opsinas de Bastones/genética , Animales , Hydrophiidae/genética , Opsinas/genética , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiología , Retina/metabolismo , Retina/fisiología , Piel/metabolismo , Cola (estructura animal)/metabolismo , Transcriptoma/genética
16.
Sci Rep ; 9(1): 748, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679714

RESUMEN

Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism.


Asunto(s)
Animales Salvajes/fisiología , Conservación de los Recursos Naturales , Peces/fisiología , Fotograbar , Animales , Animales Salvajes/anatomía & histología , Buceo , Humanos
17.
PLoS One ; 13(11): e0207703, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30475853

RESUMEN

Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.


Asunto(s)
Monitoreo del Ambiente , Peces/fisiología , Animales , Australia , Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras , Océanos y Mares , Industria del Petróleo y Gas , Algas Marinas/fisiología , Grabación en Video
19.
Proc Biol Sci ; 285(1878)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29720419

RESUMEN

Almost all animals, regardless of the anatomy of the eyes, require some level of gaze stabilization in order to see the world clearly and without blur. For the mantis shrimp, achieving gaze stabilization is unusually challenging as their eyes have an unprecedented scope for movement in all three rotational degrees of freedom: yaw, pitch and torsion. We demonstrate that the species Odontodactylus scyllarus performs stereotypical gaze stabilization in the yaw degree of rotational freedom, which is accompanied by simultaneous changes in the pitch and torsion rotation of the eye. Surprisingly, yaw gaze stabilization performance is unaffected by both the torsional pose and the rate of torsional rotation of the eye. Further to this, we show, for the first time, a lack of a torsional gaze stabilization response in the stomatopod visual system. In the light of these findings, we suggest that the neural wide-field motion detection network in the stomatopod visual system may follow a radially symmetric organization to compensate for the potentially disorientating effects of torsional eye movements, a system likely to be unique to stomatopods.


Asunto(s)
Crustáceos/fisiología , Fijación Ocular , Animales
20.
Sci Total Environ ; 634: 1077-1091, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660864

RESUMEN

For thousands of years humankind has sought to explore our oceans. Evidence of this early intrigue dates back to 130,000BCE, but the advent of remotely operated vehicles (ROVs) in the 1950s introduced technology that has had significant impact on ocean exploration. Today, ROVs play a critical role in both military (e.g. retrieving torpedoes and mines) and salvage operations (e.g. locating historic shipwrecks such as the RMS Titanic), and are crucial for oil and gas (O&G) exploration and operations. Industrial ROVs collect millions of observations of our oceans each year, fueling scientific discoveries. Herein, we assembled a group of international ROV experts from both academia and industry to reflect on these discoveries and, more importantly, to identify key questions relating to our oceans that can be supported using industry ROVs. From a long list, we narrowed down to the 10 most important questions in ocean science that we feel can be supported (whole or in part) by increasing access to industry ROVs, and collaborations with the companies that use them. The questions covered opportunity (e.g. what is the resource value of the oceans?) to the impacts of global change (e.g. which marine ecosystems are most sensitive to anthropogenic impact?). Looking ahead, we provide recommendations for how data collected by ROVs can be maximised by higher levels of collaboration between academia and industry, resulting in win-win outcomes. What is clear from this work is that the potential of industrial ROV technology in unravelling the mysteries of our oceans is only just beginning to be realised. This is particularly important as the oceans are subject to increasing impacts from global change and industrial exploitation. The coming decades will represent an important time for scientists to partner with industry that use ROVs in order to make the most of these 'eyes in the sea'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA