Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38587113

RESUMEN

Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.

2.
Am J Physiol Renal Physiol ; 326(3): F511-F533, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38234298

RESUMEN

Antibodies are one of the most used reagents in scientific laboratories and are critical components for a multitude of experiments in physiology research. Over the past decade, concerns about many biological methods, including those that use antibodies, have arisen as several laboratories were unable to reproduce the scientific data obtained in other laboratories. The lack of reproducibility could be largely attributed to inadequate reporting of detailed methods, no or limited verification by authors, and the production and use of unvalidated antibodies. The goal of this guideline article is to review best practices concerning commonly used techniques involving antibodies, including immunoblotting, immunohistochemistry, and flow cytometry. Awareness and integration of best practices will increase the rigor and reproducibility of these techniques and elevate the quality of physiology research.


Asunto(s)
Anticuerpos , Reproducibilidad de los Resultados , Inmunohistoquímica , Citometría de Flujo , Especificidad de Anticuerpos
3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511627

RESUMEN

The protein sarcospan (SSPN) is an integral member of the dystrophin-glycoprotein complex (DGC) and has been shown to be important in the heart during the development and the response to acute stress. In this study, we investigated the role of SSPN in the cardiac response to acute ischemia-reperfusion (IR) injury in SSPN-deficient (SSPN-/-) mice. First, the hemodynamic response of SSPN-/- mice was tested and was similar to SSPN+/+ (wild-type) mice after isoproterenol injection. Using the in situ Langendorff perfusion method, SSPN-/- hearts were subjected to IR injury and found to have increased infarct size and arrhythmia susceptibility compared to SSPN+/+. Ca2+ handling was assessed in single cardiomyocytes and diastolic Ca2+ levels were increased after acute ß-AR stimulation in SSPN+/+ but not SSPN-/-. It was also found that SSPN-/- cardiomyocytes had reduced Ca2+ SR content compared to SSPN+/+ but similar SR Ca2+ release. Next, we used qRT-PCR to examine gene expression of Ca2+ handling proteins after acute IR injury. SSPN-/- hearts showed a significant decrease in L-type Ca2+ channels and a significant increase in Ca2+ release channel (RyR2) expression. Interestingly, under oxidizing conditions reminiscent of IR, SSPN-/- cardiomyocytes, had increased H2O2-induced reactive oxygen species production compared to SSPN+/+. Examination of oxidative stress proteins indicated that NADPH oxidase 4 and oxidized CAMKII were increased in SSPN-/- hearts after acute IR injury. These results suggest that increased arrhythmia susceptibility in SSPN-/- hearts post-IR injury may arise from alterations in Ca2+ handling and a reduced capacity to regulate oxidative stress pathways.


Asunto(s)
Peróxido de Hidrógeno , Daño por Reperfusión , Animales , Ratones , Arritmias Cardíacas/metabolismo , Peróxido de Hidrógeno/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Daño por Reperfusión/metabolismo
4.
Front Physiol ; 13: 887702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479348

RESUMEN

The rising prevalence of obesity presents a world-wide challenge as it is associated with numerous comorbidities including cardiovascular disease, insulin resistance and hypertension. Obesity-associated illnesses are estimated to cause nearly 4 million deaths globally per year, therefore there is a critical need to better understand associated pathogenesis, identify new therapeutic targets, and develop new interventions. Emerging data identify a key role for chronic inflammation in mediating obesity related disease states and reveal higher incidence of autoimmune disease development. Of the multiple potential mechanisms linking obesity and autoimmunity, the strongest link has been shown for leptin, a hormone secreted at high levels from obese white adipose tissue. Numerous studies have demonstrated that leptin enhances activation of both arms of the immune system, while its absence protects against development of autoimmunity. Other potential newly discovered mechanisms that contribute to autoimmune pathogenesis are not directly connected but also associated with obesity including sustained platelet activation, gut dysbiosis, and aging. Here we review how obesity instigates autoimmunity, particularly in the context of immune cell activations and adipokine secretion.

6.
Arch Biochem Biophys ; 726: 109301, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661778

RESUMEN

After the discovery of troponin by Ebashi almost sixty years ago the field of striated muscle regulation has made significant progress. In the 1970's the nascent troponin field gained momentum, including contributions by James D. Potter who established the stoichiometry of contractile proteins in the myofibril (Arch Biochem Biophys. 1974 Jun; 162(2):436-41. https://doi.org/10.1016/0003-9861(7490202-1)). This opened the door to refinement of competing models that described possible thick filament configurations. This study suggested the presence of one myosin per cross bridge and provided accurate calculations of the molar ratios of each protein - myosin: actin: tropomyosin: troponin T: troponin I: troponin C.


Asunto(s)
Miofibrillas , Tropomiosina , Actinas/metabolismo , Animales , Calcio/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Miosinas/metabolismo , Conejos , Tropomiosina/metabolismo , Troponina C/metabolismo
7.
Elife ; 112022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35502901

RESUMEN

Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on ß-myosin heavy chain (ß-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface - known for protein-protein interactions - but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1's structure and dynamics - known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that ß-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between ß-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.


Asunto(s)
Cadenas Pesadas de Miosina , Sarcómeros , Adenosina Difosfato/metabolismo , Humanos , Miocardio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Procesamiento Proteico-Postraduccional , Sarcómeros/metabolismo , Factores de Transcripción/metabolismo
8.
Chem Sci ; 12(21): 7308-7323, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-34163821

RESUMEN

Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.

9.
Curr Clin Microbiol Rep ; 8(3): 167-177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717830

RESUMEN

Purpose of Review: The world is currently facing the largest global health crisis since the early 1900s due to a novel coronavirus. While SARS-CoV-2 infection causes predictable symptoms in COVID-19 patients, including upper respiratory distress and fever, the heterogeneity of manifestations is surprising. This review focuses on direct and indirect causes of myocardial injury in COVID-19 patients and highlights current knowledge, treatment strategies, and outstanding questions in the field. Recent Findings: Data are emerging that highlight the extent of cardiovascular involvement in COVID-19 patients, including evidence that SARS-CoV-2 causes myocarditis and increases cardiac risk. The incidence of cardiac injury is much greater in patients with severe disease presentation and those in intensive care. Summary: During the past year, COVID-19 patient mortality rates have improved due to tailored pharmacological treatments and patient management strategies that address the unique presentation of symptoms, which will hopefully also reduce the incidence of cardiac injury.

10.
Adv Med Sci ; 66(1): 52-71, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33387942

RESUMEN

The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.


Asunto(s)
Proteínas Asociadas a la Distrofina/metabolismo , Distrofina/metabolismo , Cardiopatías/patología , Glicoproteínas de Membrana/metabolismo , Distrofias Musculares/patología , Animales , Cardiopatías/clasificación , Cardiopatías/metabolismo , Humanos , Distrofias Musculares/metabolismo
11.
J Muscle Res Cell Motil ; 42(2): 323-342, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33179204

RESUMEN

Familial cardiomyopathy is an inherited disease that affects the structure and function of heart muscle and has an extreme range of phenotypes. Among the millions of affected individuals, patients with hypertrophic (HCM), dilated (DCM), or left ventricular non-compaction (LVNC) cardiomyopathy can experience morphologic changes of the heart which lead to sudden death in the most detrimental cases. TNNC1, the gene that codes for cardiac troponin C (cTnC), is a sarcomere gene associated with cardiomyopathies in which probands exhibit young age of presentation and high death, transplant or ventricular fibrillation events relative to TNNT2 and TNNI3 probands. Using GnomAD, ClinVar, UniProt and PhosphoSitePlus databases and published literature, an extensive list to date of identified genetic variants in TNNC1 and post-translational modifications (PTMs) in cTnC was compiled. Additionally, a recent cryo-EM structure of the cardiac thin filament regulatory unit was used to localize each functionally studied amino acid variant and each PTM (acetylation, glycation, s-nitrosylation, phosphorylation) in the structure of cTnC. TNNC1 has a large number of variants (> 100) relative to other genes of the same transcript size. Surprisingly, the mapped variant amino acids and PTMs are distributed throughout the cTnC structure. While many cardiomyopathy-associated variants are localized in α-helical regions of cTnC, this was not statistically significant χ2 (p = 0.72). Exploring the variants in TNNC1 and PTMs of cTnC in the contexts of cardiomyopathy association, physiological modulation and potential non-canonical roles provides insights into the normal function of cTnC along with the many facets of TNNC1 as a cardiomyopathic gene.


Asunto(s)
Miocardio , Troponina C , Humanos , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional/genética , Troponina C/genética , Troponina C/metabolismo , Troponina I , Troponina T/genética
12.
J Mol Cell Cardiol ; 142: 118-125, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278834

RESUMEN

INTRODUCTION: Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE: To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS: Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS: Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION: TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.


Asunto(s)
Alelos , Cardiomiopatías/genética , Cardiomiopatías/mortalidad , Predisposición Genética a la Enfermedad , Variación Genética , Sitios de Carácter Cuantitativo , Troponina/genética , Edad de Inicio , Sustitución de Aminoácidos , Cardiomiopatías/diagnóstico , Mapeo Cromosómico , Bases de Datos Genéticas , Estudios de Asociación Genética , Genotipo , Humanos , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Troponina/metabolismo , Troponina I/genética , Troponina T/genética
13.
Physiol Rep ; 8(6): e14396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32189431

RESUMEN

Heart disease remains the number one killer of women in the US. Nonetheless, studies in women and female animal models continue to be underrepresented in cardiac research. Hypertrophic cardiomyopathy (HCM), the most commonly inherited cardiac disorder, has been tied to sarcomeric protein variants in both sexes. Among the susceptible genes, TNNC1-encoding cardiac troponin C (cTnC)-causes a substantial HCM phenotype in mice. Mice bearing an HCM-associated cTnC-A8V point mutation exhibited a significant decrease in stroke volume and left ventricular diameter and volume. Importantly, isovolumetric contraction time was significantly higher for female HCM mice. We utilized a transcriptomic approach to investigate the basis underlying the sexual dimorphism observed in the cardiac physiology of adult male and female HCM mice. RNA sequencing revealed several altered canonical pathways within the HCM mice versus WT groups including an increase in eukaryotic initiation factor 2 signaling, integrin-linked kinase signaling, actin nucleation by actin-related protein-Wiskott-Aldrich syndrome family protein complex, regulation of actin-based motility by Rho kinase, vitamin D receptor/retinoid X receptor activation, and glutathione redox reaction pathways. In contrast, valine degradation, tricarboxylic acid cycle II, methionine degradation, and inositol phosphate compound pathways were notably down-regulated in HCM mice. These down-regulated pathways may be reduced in response to altered energetics in the hypertrophied hearts and may represent conservation of energy as the heart is compensating to meet increased contractile demands. HCM male versus female mice followed similar trends of the canonical pathways altered between HCM and WT. In addition, seven of the differentially expressed genes in both WT and HCM male versus female comparisons swapped directions in fold-change between the sexes. These findings suggest a sexually-dimorphic HCM phenotype due to a sarcomeric mutation and pinpoint several key targetable pathways and genes that may provide the means to alleviate the more severe decline in female cardiac function.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Caracteres Sexuales , Transcriptoma , Troponina C/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Masculino , Ratones Transgénicos , Troponina C/genética
14.
JCI Insight ; 52019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31039133

RESUMEN

In the current preclinical study, we demonstrate the therapeutic potential of sarcospan (SSPN) overexpression to alleviate cardiomyopathy associated with Duchenne muscular dystrophy (DMD) utilizing dystrophin-deficient mdx mice with utrophin haploinsufficiency that more accurately represent the severe disease course of human DMD. SSPN interacts with dystrophin, the DMD disease gene product, and its autosomal paralog utrophin, which is upregulated in DMD as a partial compensatory mechanism. SSPN transgenic mice have enhanced abundance of fully glycosylated α-dystroglycan, which may further protect dystrophin-deficient cardiac membranes. Baseline echocardiography reveals SSPN improves systolic function and hypertrophic indices in mdx and mdx:utr-heterozygous mice. Assessment of SSPN transgenic mdx mice by hemodynamic pressure-volume methods highlights enhanced systolic performance compared to mdx controls. SSPN restores cardiac sarcolemma stability, the primary defect in DMD disease, reduces fibrotic response and improves contractile function. We demonstrate that SSPN ameliorates more advanced cardiac disease in the context of diminished sarcolemma expression of utrophin and ß1D integrin that mitigate disease severity and partially restores responsiveness to ß-adrenergic stimulation. Overall, our current and previous findings suggest SSPN overexpression in DMD mouse models positively impacts skeletal, pulmonary and cardiac performance by addressing the stability of proteins at the sarcolemma that protect the heart from injury, supporting SSPN and membrane stabilization as a therapeutic target for DMD.


Asunto(s)
Cardiomiopatías/terapia , Terapia Genética/métodos , Proteínas de la Membrana/genética , Distrofia Muscular de Duchenne/complicaciones , Proteínas de Neoplasias/genética , Sarcolema/patología , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Distrofina/genética , Ecocardiografía , Femenino , Humanos , Integrina beta1 , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Contracción Muscular/genética , Músculo Esquelético/citología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Miocardio/citología , Miocardio/patología , Proteínas de Neoplasias/metabolismo , Estabilidad Proteica , Utrofina/metabolismo
15.
Arch Biochem Biophys ; 663: 95-100, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30584890

RESUMEN

The cardiac contraction-relaxation cycle is controlled by a sophisticated set of machinery. Of particular interest, is the revelation that allosteric networks transmit effects of binding at one site to influence troponin complex dynamics and structural-mediated signaling in often distal, functional sites in the myofilament. Our recent observations provide compelling evidence that allostery can explain the function of large-scale macromolecular events. Here we elaborate on our recent findings of interdomain communication within troponin C, using cutting-edge structural biology approaches, and highlight the importance of unveiling the unknown, distant communication networks within this system to obtain more comprehensive knowledge of how allostery impacts cardiac physiology and disease.


Asunto(s)
Troponina C/metabolismo , Troponina I/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Humanos , Unión Proteica , Relación Estructura-Actividad , Troponina C/química , Troponina I/química
16.
Front Physiol ; 8: 221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473771

RESUMEN

Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband.

17.
J Am Heart Assoc ; 4(12)2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26702077

RESUMEN

BACKGROUND: Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. METHODS AND RESULTS: SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to ß-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and ß1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. CONCLUSIONS: SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.


Asunto(s)
Cardiomiopatías/etiología , Proteínas Portadoras/fisiología , Corazón/efectos de los fármacos , Isoproterenol/farmacología , Proteínas de la Membrana/fisiología , Distrofia Muscular de Duchenne/complicaciones , Proteínas de Neoplasias/fisiología , Animales , Cardiomiopatías/patología , Forma MB de la Creatina-Quinasa/sangre , Ecocardiografía , Técnica del Anticuerpo Fluorescente , Corazón/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Distrofia Muscular de Duchenne/patología , Miocardio/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcolema/fisiología
18.
Circ Cardiovasc Genet ; 8(5): 653-664, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26304555

RESUMEN

BACKGROUND: Mutations in thin-filament proteins have been linked to hypertrophic cardiomyopathy, but it has never been demonstrated that variants identified in the TNNC1 (gene encoding troponin C) can evoke cardiac remodeling in vivo. The goal of this study was to determine whether TNNC1 can be categorized as an hypertrophic cardiomyopathy susceptibility gene, such that a mouse model can recapitulate the clinical presentation of the proband. METHODS AND RESULTS: The TNNC1-A8V proband diagnosed with severe obstructive hypertrophic cardiomyopathy at 34 years of age exhibited mild-to-moderate thickening in left and right ventricular walls, decreased left ventricular dimensions, left atrial enlargement, and hyperdynamic left ventricular systolic function. Genetically engineered knock-in (KI) mice containing the A8V mutation (heterozygote=KI-TnC-A8V(+/-); homozygote=KI-TnC-A8V(+/+)) were characterized by echocardiography and pressure-volume studies. Three-month-old KI-TnC-A8V(+/+) mice displayed decreased ventricular dimensions, mild diastolic dysfunction, and enhanced systolic function, whereas KI-TnC-A8V(+/-) mice displayed cardiac restriction at 14 months of age. KI hearts exhibited atrial enlargement, papillary muscle hypertrophy, and fibrosis. Liquid chromatography-mass spectroscopy was used to determine incorporation of mutant cardiac troponin C (≈ 21%) into the KI-TnC-A8V(+/-) cardiac myofilament. Reduced diastolic sarcomeric length, increased shortening, and prolonged Ca(2+) and contractile transients were recorded in intact KI-TnC-A8V(+/-) and KI-TnC-A8V(+/+) cardiomyocytes. Ca(2+) sensitivity of contraction in skinned fibers increased with mutant gene dose: KI-TnC-A8V(+/+)>KI-TnC-A8V(+/-)>wild-type, whereas KI-TnC-A8V(+/+) relaxed more slowly on flash photolysis of diazo-2. CONCLUSIONS: The TNNC1-A8V mutant increases the Ca(2+)-binding affinity of the thin filament and elicits changes in Ca(2+) homeostasis and cellular remodeling, which leads to diastolic dysfunction. These in vivo alterations further implicate the role of TNNC1 mutations in the development of cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Predisposición Genética a la Enfermedad , Troponina C/genética , Adulto , Animales , Calcio/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Técnicas de Sustitución del Gen , Corazón , Humanos , Masculino , Ratones , Mutación , Contracción Miocárdica , Miocardio/patología , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Sarcómeros , Ultrasonografía
19.
Biochim Biophys Acta ; 1850(2): 365-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450489

RESUMEN

BACKGROUND: Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS: Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS: A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS: Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE: The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Mutación , Miocardio/metabolismo , Troponina T/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Humanos , Miocardio/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Miofibrillas/patología , Fosforilación/genética , Estabilidad Proteica , Porcinos , Troponina T/genética
20.
FEBS Lett ; 586(20): 3548-54, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22940112

RESUMEN

Lacking from the rapidly evolving field of chromatin regulation is a discrete model of chromatin states. We propose that each state in such a model should meet two conditions: a structural component and a quantifiable effect on transcription. The practical benefits to the field of a model with greater than two states (including one with six states, as described herein) would be to improve interpretation of data from disparate organ systems, to reflect temporal and developmental dynamics and to integrate the, at present, conceptually and experimentally disparate analyses of individual genetic loci (in vitro or using single gene approaches) and genome-wide features (including ChlP-seq, chromosomal capture and mRNA expression via microarrays/sequencing).


Asunto(s)
Cromatina/química , Cromatina/genética , Modelos Biológicos , Transcripción Genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA