Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nat Med ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689060

RESUMEN

Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .

2.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
3.
Front Immunol ; 14: 1271236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965314

RESUMEN

CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Humanos , Linfocitos T CD4-Positivos
4.
Biomed Pharmacother ; 168: 115635, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37816303

RESUMEN

Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Canal de Potasio Kv1.3/genética , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Reguladoras de la Apoptosis/metabolismo , Mutación
5.
Front Immunol ; 14: 1245559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849763

RESUMEN

Intorduction: Chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen, is expressed in melanoma but also other tumor entities and constitutes an attractive target for immunotherapeutic approaches. While recent preclinical reports focused on anti-CSPG4 chimeric antigen receptors (CAR), we here explore T-cell receptor (TCR)-based approaches targeting CSPG4. Methods: The TCRs of two CSPG4-reactive T-cell clones (11C/73 and 2C/165) restricted by the highly prevalent HLA-C*07:01 allele were isolated and the respective αßTCR pairs were retrovirally expressed in CRISPR/Cas9-edited TCR-knockout T cells for functional testing. We also combined alpha and beta TCR chains derived from 11C/73 and 2C/165 in a cross-over fashion to assess for hemichain dominance. CSPG4+ melanoma, glioblastoma and lung cancer cell lines were identified and, if negative, retrovirally transduced with HLA-C*07:01. Results: Functional tests confirmed specific recognition of CSPG4+HLA-C*07:01+ target cells by the αßTCR retrieved from the parental T-cell clones and in part also by the cross-over TCR construct 2Cα-11Cß. Despite high surface expression, the 11Cα-2Cß combination, however, was not functional. Discussion: Collectively, 11C/73- and 2C/165-expressing T cells specifically and efficiently recognized CSPG4+HLA-C*07:01+ cancer cells which warrants further preclinical and clinical evaluation of these TCRs.


Asunto(s)
Antígenos HLA-C , Melanoma , Humanos , Antígenos HLA-C/genética , Receptores de Antígenos de Linfocitos T , Linfocitos T , Proteínas de la Membrana , Proteoglicanos Tipo Condroitín Sulfato
7.
Nat Cancer ; 4(9): 1292-1308, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525015

RESUMEN

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


Asunto(s)
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapéutico , Antígeno CTLA-4/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética
8.
Clin Cancer Res ; 29(15): 2894-2907, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199727

RESUMEN

PURPOSE: Recent studies have demonstrated HLA class II (HLA-II)-dependent killing of melanoma cells by cytotoxic CD4 T cells. We investigated evolution of HLA-II-loss tumors that escape cytotoxic CD4 T-cell activity and contribute to immunotherapy resistance. EXPERIMENTAL DESIGN: Melanoma cells from longitudinal metastases were studied for constitutive and IFN-inducible HLA-II expression, sensitivity towards autologous CD4 T cells, and immune evasion by HLA-II loss. Clinical significance of HLA-II-low tumors was determined by analysis of transcriptomic data sets from patients with immune checkpoint blockade (ICB). RESULTS: Analysis of longitudinal samples revealed strong intermetastatic heterogeneity in melanoma cell-intrinsic HLA-II expression and subclonal HLA-II loss. Tumor cells from early lesions either constitutively expressed HLA-II, sensitizing to cytotoxic CD4 T cells, or induced HLA-II and gained CD4 T-cell sensitivity in the presence of IFNγ. In contrast, late outgrowing subclones displayed a stable CD4 T-cell-resistant HLA-II-loss phenotype. These cells lacked not only constitutive but also IFNγ-inducible HLA-II due to JAK1/2-STAT1 pathway inactivation. Coevolution of JAK1/2 deficiency and HLA-II loss established melanoma cross-resistance to IFNγ and CD4 T cells, as detected in distinct stage IV metastases. In line with their immune-evasive phenotype, HLA-II-low melanomas showed reduced CD4 T-cell infiltrates and correlated with disease progression under ICB. CONCLUSIONS: Our study links melanoma resistance to CD4 T cells, IFNγ, and ICB at the level of HLA-II, highlighting the significance of tumor cell-intrinsic HLA-II antigen presentation in disease control and calling for strategies to overcome its downregulation for improvement of patient outcome.

9.
Front Immunol ; 14: 1119498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875127

RESUMEN

Recurrent neoepitopes are cancer-specific antigens common among groups of patients and therefore ideal targets for adoptive T cell therapy. The neoepitope FSGEYIPTV carries the Rac1P29S amino acid change caused by a c.85C>T missense mutation, which is the third most common hotspot mutation in melanoma. Here, we isolated and characterized TCRs to target this HLA-A*02:01-binding neoepitope by adoptive T cell therapy. Peptide immunization elicited immune responses in transgenic mice expressing a diverse human TCR repertoire restricted to HLA-A*02:01, which enabled isolation of high-affinity TCRs. TCR-transduced T cells induced cytotoxicity against Rac1P29S expressing melanoma cells and we observed regression of Rac1P29S expressing tumors in vivo after adoptive T cell therapy (ATT). Here we found that a TCR raised against a heterologous mutation with higher peptide-MHC affinity (Rac2P29L) more efficiently targeted the common melanoma mutation Rac1P29S. Overall, our study provides evidence for the therapeutic potential of Rac1P29S-specific TCR-transduced T cells and reveal a novel strategy by generating more efficient TCRs by heterologous peptides.


Asunto(s)
Melanoma , Animales , Ratones , Humanos , Receptores de Antígenos de Linfocitos T , Membrana Celular , Reparación del ADN , Ratones Transgénicos , Antígenos HLA-A
10.
Pigment Cell Melanoma Res ; 36(2): 252-258, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36382970

RESUMEN

Large genome-scale studies are deposited in various public sequence repositories. However, their access and analysis can be non-trivial to infrequent users. Here, we present a new database connecting whole transcriptomes with clinical data for straight-forward access and analysis of patient-specific samples. Users can perform association tests of survival and gene expression across different cohorts, identify cell-type expressions, or correlate the presence of immune cells. In summary, we present a new data hub for bench scientists to perform replication and discovery studies.


Asunto(s)
Melanoma , Humanos , Transcriptoma
11.
Clin Transl Med ; 12(11): e1090, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320118

RESUMEN

BACKGROUND: Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS: We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS: KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS: In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.


Asunto(s)
Ácidos Nucleicos Libres de Células , Melanoma , Nevo , Humanos , Biomarcadores de Tumor/genética , Melanoma/genética , Melanoma/patología , Ácidos Nucleicos Libres de Células/genética , Mutación , Genotipo , ARN Mensajero
12.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36077603

RESUMEN

Melanocytic neoplasms have been genetically characterized in detail during the last decade. Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology. In addition, they have been identified in 1-2% of advanced melanoma. Performing a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations, we found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanomas) demonstrated a different genetic profile, instead grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (n = 21, 55%) and NRAS Q61 (n = 13, 34%). In our cohort, four of seven (58%) and one of nine (11%) patients treated with targeted therapy (BRAF and MEK Inhibitors) or immune-checkpoint therapy, respectively, showed disease control (partial response or stable disease). In summary, CTNNB1 mutations are associated with a unique melanocytic tumor type in benign tumors (nevi), which can be applied in a diagnostic setting. In advanced disease, no clear characteristics distinguishing CTNNB1-mutant from other melanomas were observed; however, studies of larger, optimally prospective, cohorts are warranted.

13.
Nat Commun ; 13(1): 3055, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650266

RESUMEN

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Asunto(s)
Melanoma , Monofenol Monooxigenasa , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Melanocitos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología
14.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697379

RESUMEN

BACKGROUND: Immune-stimulatory agents, like agonists of the innate immune receptor RIG-I, are currently tested in clinical trials as an intratumoral treatment option for patients with unresectable melanoma, aiming to enhance anti-tumor T cell responses. Switching of melanoma toward a dedifferentiated cell state has recently been linked to T cell and therapy resistance. It remains to be determined whether RIG-I agonists affect melanoma differentiation, potentially leading to T cell resistance. METHODS: Patient metastases-derived melanoma cell lines were treated with the synthetic RIG-I agonist 3pRNA, and effects on tumor cell survival, phenotype and differentiation were determined. Transcriptomic data sets from cell lines and metastases were analyzed for associations between RIG-I (DDX58) and melanoma differentiation markers and used to define signaling pathways involved in RIG-I-driven dedifferentiation. The impact of 3pRNA-induced melanoma dedifferentiation on CD8 T cell activation was studied in autologous tumor T cell models. RESULTS: RIG-I activation by 3pRNA induced apoptosis in a subpopulation of melanoma cells, while the majority of tumor cells switched into a non-proliferative cell state. Those persisters displayed a dedifferentiated cell phenotype, marked by downregulation of the melanocytic lineage transcription factor MITF and its target genes, including melanoma differentiation antigens (MDA). Transition into the MITFlow/MDAlow cell state was JAK-dependent, with some cells acquiring nerve growth factor receptor expression. MITFlow/MDAlow persisters switched back to the proliferative differentiated cell state when RIG-I signaling declined. Consistent with our in vitro findings, an association between melanoma dedifferentiation and high RIG-I (DDX58) levels was detected in transcriptomic data from patient metastases. Notably, despite their dedifferentiated cell phenotype, 3pRNA-induced MITFlow/MDAlow persisters were still efficiently targeted by autologous CD8 tumor-infiltrating T lymphocytes (TILs). CONCLUSIONS: Our results demonstrate that RIG-I signaling in melanoma cells drives a transient phenotypic switch toward a non-proliferative dedifferentiated persister cell state. Despite their dedifferentiation, those persisters are highly immunogenic and sensitive toward autologous TILs, challenging the concept of melanoma dedifferentiation as a general indicator of T cell resistance. In sum, our findings support the application of RIG-I agonists as a therapeutic tool for the generation of long-term clinical benefit in non-resectable melanoma.


Asunto(s)
Melanoma , Linfocitos T CD8-positivos , Línea Celular Tumoral , Humanos , Inmunidad Innata , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Transducción de Señal
15.
Int J Cancer ; 151(9): 1542-1554, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35737508

RESUMEN

Accurate classification of melanocytic tumors is important for prognostic evaluation, treatment and follow-up protocols of patients. The majority of melanocytic proliferations can be classified solely based on clinical and pathological criteria, however in select cases a definitive diagnostic assessment remains challenging and additional diagnostic biomarkers would be advantageous. We analyzed melanomas, nevi, Spitz nevi and atypical spitzoid tumors using parallel sequencing (exons of 611 genes and 507 gene translocation analysis) and methylation arrays (850k Illumina EPIC). By combining detailed genetic and epigenetic analysis with reference-based and reference-free DNA methylome deconvolution we compared Spitz nevi to nevi and melanoma and assessed the potential for these methods in classifying challenging spitzoid tumors. Results were correlated with clinical and histologic features. Spitz nevi were found to cluster independently of nevi and melanoma and demonstrated a different mutation profile. Multiple copy number alterations and TERT promoter mutations were identified only in melanomas. Genome-wide methylation in Spitz nevi was comparable to benign nevi while the Leukocytes UnMethylation for Purity (LUMP) algorithm in Spitz nevi was comparable to melanoma. Histologically difficult to classify Spitz tumor cases were assessed which, based on methylation arrays, clustered between Spitz nevi and melanoma and in terms of genetic profile or copy number variations demonstrated worrisome features suggesting a malignant neoplasm. Comprehensive sequencing and methylation analysis verify Spitz nevi as an independent melanocytic entity distinct from both nevi and melanoma. Combined genetic and methylation assays can offer additional insights in diagnosing difficult to classify Spitzoid tumors.


Asunto(s)
Melanoma , Nevo de Células Epitelioides y Fusiformes , Paraganglioma , Neoplasias Cutáneas , Variaciones en el Número de Copia de ADN , Diagnóstico Diferencial , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patología , Metilación , Nevo de Células Epitelioides y Fusiformes/diagnóstico , Nevo de Células Epitelioides y Fusiformes/genética , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Síndrome
16.
Cancers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35565222

RESUMEN

(1) Background: Melanoma has the highest mortality of all cutaneous tumors, despite recent treatment advances. Many relevant genetic events have been identified in the last decade, including recurrent ARID1A mutations, which in various tumors have been associated with improved outcomes to immunotherapy. (2) Methods: Retrospective analysis of 116 melanoma samples harboring ARID1A mutations. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome applying Kaplan-Meier (log-rank test), Fisher's exact and Chi-squared tests. (3) Results: The majority of ARID1A mutations were in cutaneous and occult melanoma. ARID1A mutated samples had a higher number of mutations than ARID1A wild-type samples and harbored UV-mutations. A male predominance was observed. Many samples also harbored NF1 mutations. No apparent differences were noted between samples harboring genetically inactivating (frame-shift or nonsense) mutations and samples with other mutations. No differences in survival or response to immunotherapy of patients with ARID1A mutant melanoma were observed. (4) Conclusions: ARID1A mutations primarily occur in cutaneous melanomas with a higher mutation burden. In contrast to findings in other tumors, our data does not support ARID1A mutations being a biomarker of favorable response to immunotherapies in melanoma. Larger prospective studies would still be warranted.

17.
Nat Commun ; 13(1): 156, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013174

RESUMEN

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pancreáticas/genética , Progranulinas/genética , Escape del Tumor/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/genética , Antígenos Virales/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Citotoxicidad Inmunológica , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Progranulinas/antagonistas & inhibidores , Progranulinas/inmunología , Proteolisis , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Cancer ; 161: 99-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936949

RESUMEN

BACKGROUND: Around 50% of cutaneous melanomas harbour therapeutically targetable BRAF V600 mutations. Reliable clinical biomarkers predicting duration of response to BRAF-targeted therapies are still lacking. Recent in vitro studies demonstrated that BRAF-MEK inhibitor therapy response is associated with tumour TERT promoter mutation status. We assessed this potential association in a clinical setting. METHODS: The study cohort comprised 232 patients with metastatic or unresectable BRAF V600-mutated melanoma receiving combined BRAF/MEK inhibitor treatment, including a single-centre retrospective discovery cohort (N = 120) and a prospectively collected multicenter validation cohort (N = 112). Patients were excluded if they received BRAF or MEK inhibitors in an adjuvant setting, as monotherapy, or in combination with immunotherapy. Kaplan-Meier and univariate/multivariate Cox regression analyses were performed as appropriate. RESULTS: median age at first diagnosis was 54 years (range 16-84 years). The majority of patients were men 147/232 (63.4%). Most tumours harboured TERT promoter mutations (72%, N = 167). A survival advantage was observed in both progression-free survival (PFS) and overall survival (OS) for patients with TERT promoter-mutant versus wild-type tumours in both the discovery cohort (mPFS of 9.6 months [N = 87] vs 5.0 months [N = 33]; hazard ratio [HR] = 0.56 [95% confidence interval {CI} 0.33-0.96] and mOS of 33.6 months vs 15.0 months; HR = 0.47 [95%CI 0.32-0.70]) as well as the validation cohort (mPFS of 7.3 months [N = 80] vs 5.8 months [N = 32]; HR = 0.67 [95%CI 0.41-1.10] and mOS of 51.1 months vs 15.0 months; HR = 0.33 [95%CI 0.18-0.63]). In the pooled cohort of TERT promoter-mutant (N = 167) versus wild-type (N = 65) tumours, respectively, PFS was 8.9 versus 5.5 months, (HR = 0.62; 95%CI 0.45-0.87; P = 0.004), and OS was 33.6 versus 17.0 months, (HR = 0.51; 95%CI 0.35-0.75, P = 0.0001). CONCLUSIONS: In patients with melanoma receiving BRAF/MEK-targeted therapies, TERT promoter mutations are associated with longer survival. If validated in larger studies, TERT promoter mutation status should be included as a predictive biomarker in treatment algorithms for advanced melanoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Telomerasa/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Retrospectivos , Adulto Joven
19.
Front Cell Dev Biol ; 10: 1055288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726591

RESUMEN

Metastatic melanoma presents, in many cases, oncogenic mutations in BRAF, a MAPK involved in proliferation of tumour cells. BRAF inhibitors, used as therapy in patients with these mutations, often lead to tumour resistance and, thus, the use of MEK inhibitors was introduced in clinics. BRAFi/MEKi, a combination that has modestly increased overall survival in patients, has been proven to differentially affect immune ligands, such as NKG2D-ligands, in drug-sensitive vs. drug-resistant cells. However, the fact that NKG2D-ligands can be released as soluble molecules or in extracellular vesicles represents an additional level of complexity that has not been explored. Here we demonstrate that inhibition of MAPK using MEKi, and the combination of BRAFi with MEKi in vitro, modulates NKG2D-ligands in BRAF-mutant and WT melanoma cells, together with other NK activating ligands. These observations reinforce a role of the immune system in the generation of resistance to directed therapies and support the potential benefit of MAPK inhibition in combination with immunotherapies. Both soluble and EV-associated NKG2D-ligands, generally decreased in BRAF-mutant melanoma cell supernatants after MAPKi in vitro, replicating cell surface expression. Because potential NKG2D-ligand fluctuation during MAPKi treatment could have different consequences for the immune response, a pilot study to measure NKG2D-ligand variation in plasma or serum from metastatic melanoma patients, at different time points during MAPKi treatment, was performed. Not all NKG2D-ligands were equally detected. Further, EV detection did not parallel soluble protein. Altogether, our data confirm the heterogeneity between melanoma lesions, and suggest testing several NKG2D-ligands and other melanoma antigens in serum, both as soluble or vesicle-released proteins, to help classifying immune competence of patients.

20.
Eur J Cancer ; 159: 113-124, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742158

RESUMEN

BACKGROUND: NF1-mutated tumours represent a small subset (10-15%) of melanomas, not sufficiently analysed in large clinical cohorts. This study investigated the largest multicentre collection of NF1-mutated melanomas to date. METHODS: This study analysed a multicentre tumour tissue sample cohort from 266 patients with NF1-mutated melanoma. Targeted next-generation sequencing of the TERT promoter and 29 relevant melanoma genes was performed. Survival was compared with NF1 wild-type cohorts from the Tissue Registry in Melanoma project (n = 432). RESULTS: Most NF1-mutated melanoma arose in the head-and-neck region of patients >60 years. NF1 alterations were frequently inactivating, primarily non-sense, less frequently truncating mutations. Non-inactivating NF1 mutations more frequently co-occurred with activating BRAF and RAS mutations. NF1-mutated tumours had higher numbers of gene mutations and UV signature C>T and CC>TT transitions than BRAF, RAS and triple wild-type melanomas. NF1-mutated acral and mucosal melanomas harboured a different mutation signature and were frequent in women (69% and 83%, respectively), differing from non-acral cutaneous NF1-mutated melanomas (men 73%, women 27%). Overall survival in stage IV disease was comparable for patients with NF1-mutated or wild-type melanoma. However, in patients receiving first-line immune checkpoint inhibitor treatment, better median overall survival (mOS) was observed for NF1-mutated than wild-type tumours (mOS = not reached vs mOS = 25.82, p = 0.0154, n = 80 and 432, respectively). CONCLUSIONS: Cutaneous, acral and mucosal NF1-mutated melanomas vary in clinical and genetic characteristics and demonstrate a favourable outcome on immune checkpoint inhibition therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neurofibromina 1/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA