Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 67(1): 50-60, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35468042

RESUMEN

Immune cells have been implicated in idiopathic pulmonary fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and used existing single-cell RNA-sequencing data to investigate transcriptional profiles of immune cells overrepresented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DCs. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for IFN-γ response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subsets of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM) and CD8+ effector memory cells. The response to the IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, together with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared with control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and upregulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Macrófagos Alveolares/metabolismo
2.
JCI Insight ; 3(16)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30135303

RESUMEN

ER stress in type II alveolar epithelial cells (AECs) is common in idiopathic pulmonary fibrosis (IPF), but the contribution of ER stress to lung fibrosis is poorly understood. We found that mice deficient in C/EBP homologous protein (CHOP), an ER stress-regulated transcription factor, were protected from lung fibrosis and AEC apoptosis in 3 separate models where substantial ER stress was identified. In mice treated with repetitive intratracheal bleomycin, we identified localized hypoxia in type II AECs as a potential mechanism explaining ER stress. To test the role of hypoxia in lung fibrosis, we treated mice with bleomycin, followed by exposure to 14% O2, which exacerbated ER stress and lung fibrosis. Under these experimental conditions, CHOP-/- mice, but not mice with epithelial HIF (HIF1/HIF2) deletion, were protected from AEC apoptosis and fibrosis. In vitro studies revealed that CHOP regulates hypoxia-induced apoptosis in AECs via the inositol-requiring enzyme 1α (IRE1α) and the PKR-like ER kinase (PERK) pathways. In human IPF lungs, CHOP and hypoxia markers were both upregulated in type II AECs, supporting a conclusion that localized hypoxia results in ER stress-induced CHOP expression, thereby augmenting type II AEC apoptosis and potentiating lung fibrosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Fibrosis Pulmonar Idiopática/patología , Alveolos Pulmonares/patología , Factor de Transcripción CHOP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bleomicina/toxicidad , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Endorribonucleasas/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Factor de Transcripción CHOP/genética , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...