Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8155, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581239

RESUMEN

Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.


Asunto(s)
Daucus carota , Policétidos , Toxinas Biológicas , Alternaria/metabolismo , Daucus carota/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Metabolismo Secundario/genética , Toxinas Biológicas/metabolismo
2.
Phytopathology ; 112(7): 1401-1405, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35080437

RESUMEN

Hybridization and adaptation to new hosts are important mechanisms of fungal disease emergence. Evaluating the risk of emergence of hybrids with enhanced virulence is then key to develop sustainable crop disease management. We evaluated this risk in Venturia inaequalis, the fungus responsible for the common and serious scab disease on Rosaceae hosts, including apple, pyracantha, and loquat. Field isolates from these three hosts and progenies obtained from five crosses between formae speciales isolates collected from pyracantha (f. sp. pyracantha) and apple (f. sp. pomi) were tested for their pathogenicity on the three hosts. We confirmed a strict host specificity between isolates from apple and pyracantha and showed that most isolates were able to cause disease on loquat. None of the 251 progeny obtained from five crosses between V. inaequalis f. sp. pyracantha and V. inaequalis f. sp. pomi could infect apple. If confirmed on more crosses, the inability of the hybrids to infect apple could lead to a novel biocontrol strategy based on a sexual hijacking of V. inaequalis f. sp. pomi by a massive introduction of V. inaequalis f. sp. pyracantha in apple orchards. This strategy, analogous to the sterile insect approach, could lead to the collapse of the population size of V. inaequalis and dramatically reduce the use of chemicals in orchards.


Asunto(s)
Ascomicetos , Malus , Ascomicetos/genética , Hongos del Género Venturia , Malus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...