Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 60(2): 4004-4018, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38746988

RESUMEN

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder caused by the gain of dose of at least the genes MECP2 and IRAK1 and is characterised by intellectual disability (ID), developmental delay, hypotonia, epilepsy and recurrent infections. It mainly affects males, and females can be affected or asymptomatic carriers. Rett syndrome (RTT) is mainly triggered by loss of function mutations in MECP2 and is a well described syndrome that presents ID, epilepsy, lack of purposeful hand use and impaired speech, among others. As a result of implementing omics technology, altered biological pathways in human RTT samples have been reported, but such molecular characterisation has not been performed in patients with MDS. We gathered human skin fibroblasts from 17 patients with MDS, 10 MECP2 duplication carrier mothers and 21 patients with RTT, and performed multi-omics (RNAseq and proteomics) analysis. Here, we provide a thorough description and compare the shared and specific dysregulated biological processes between the cohorts. We also highlight the genes TMOD2, SRGAP1, COPS2, CNPY2, IGF2BP1, MOB2, VASP, FZD7, ECSIT and KIF3B as biomarker and therapeutic target candidates due to their implication in neuronal functions. Defining the RNA and protein profiles has shown that our four cohorts are less alike than expected by their shared phenotypes.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteína 2 de Unión a Metil-CpG , Proteómica , Síndrome de Rett , Humanos , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Síndrome de Rett/genética , Niño , Adulto , Adolescente , Heterocigoto , Preescolar , Fibroblastos/metabolismo , Adulto Joven , Multiómica
2.
Hum Genomics ; 17(1): 85, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37710353

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the methyl-CpG-binding protein 2 gene (MECP2). MeCP2 is a multi-functional protein involved in many cellular processes, but the mechanisms by which its dysfunction causes disease are not fully understood. The duplication of the MECP2 gene causes a distinct disorder called MECP2 duplication syndrome (MDS), highlighting the importance of tightly regulating its dosage for proper cellular function. Additionally, some patients with mutations in genes other than MECP2 exhibit phenotypic similarities with RTT, indicating that these genes may also play a role in similar cellular functions. The purpose of this study was to characterise the molecular alterations in patients with RTT in order to identify potential biomarkers or therapeutic targets for this disorder. METHODS: We used a combination of transcriptomics (RNAseq) and proteomics (TMT mass spectrometry) to characterise the expression patterns in fibroblast cell lines from 22 patients with RTT and detected mutation in MECP2, 15 patients with MDS, 12 patients with RTT-like phenotypes and 13 healthy controls. Transcriptomics and proteomics data were used to identify differentially expressed genes at both RNA and protein levels, which were further inspected via enrichment and upstream regulator analyses and compared to find shared features in patients with RTT. RESULTS: We identified molecular alterations in cellular functions and pathways that may contribute to the disease phenotype in patients with RTT, such as deregulated cytoskeletal components, vesicular transport elements, ribosomal subunits and mRNA processing machinery. We also compared RTT expression profiles with those of MDS seeking changes in opposite directions that could lead to the identification of MeCP2 direct targets. Some of the deregulated transcripts and proteins were consistently affected in patients with RTT-like phenotypes, revealing potentially relevant molecular processes in patients with overlapping traits and different genetic aetiology. CONCLUSIONS: The integration of data in a multi-omics analysis has helped to interpret the molecular consequences of MECP2 dysfunction, contributing to the characterisation of the molecular landscape in patients with RTT. The comparison with MDS provides knowledge of MeCP2 direct targets, whilst the correlation with RTT-like phenotypes highlights processes potentially contributing to the pathomechanism leading these disorders.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Síndrome de Rett , Humanos , Síndrome de Rett/genética , Multiómica , Procesamiento Postranscripcional del ARN
3.
Mol Ther Nucleic Acids ; 27: 621-644, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35036070

RESUMEN

Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes. Proteomic analysis of hippocampal samples from affected individuals confirms abnormal levels of several cytoskeleton-related proteins together with key alterations in neurotransmission. Importantly, the glutamate receptor GRIA3 gene displays altered biogenesis in affected individuals and in vitro human cells and is influenced by expression of two ultraconserved RNAs. We also describe post-transcriptional regulation of SIRT2 by circRNAs, which modulates acetylation and total protein levels of GluR-1. As a consequence, both regulatory mechanisms converge on the biogenesis of AMPA receptors, with an effect on neuronal differentiation. In both cases, the noncoding RNAs antagonize MeCP2-directed regulation. Our findings indicate that noncoding transcripts may contribute to key alterations in Rett syndrome and are not only useful tools for revealing dysregulated processes but also molecules of biomarker value.

4.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638716

RESUMEN

Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several "omics", and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Diagnóstico Molecular , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Secuenciación Completa del Genoma , Humanos
5.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502518

RESUMEN

Methyl CpG binding protein 2 (MECP2) is located at Xq28 and is a multifunctional gene with ubiquitous expression. Loss-of-function mutations in MECP2 are associated with Rett syndrome (RTT), which is a well-characterized disorder that affects mainly females. In boys, however, mutations in MECP2 can generate a wide spectrum of clinical presentations that range from mild intellectual impairment to severe neonatal encephalopathy and premature death. Thus, males can be more difficult to classify and diagnose than classical RTT females. In addition, there are some variants of unknown significance in MECP2, which further complicate the diagnosis of these children. Conversely, the entire duplication of the MECP2 gene is related to MECP2 duplication syndrome (MDS). Unlike in RTT, in MDS, males are predominantly affected. Usually, the duplication is inherited from an apparently asymptomatic carrier mother. Both syndromes share some characteristics, but also differ in some aspects regarding the clinical picture and evolution. In the following review, we present a thorough description of the different types of MECP2 variants and alterations that can be found in males, and explore several genotype-phenotype correlations, although there is still a lot to understand.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Encefalopatías/genética , Disfunción Cognitiva/genética , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación/genética , Fenotipo , Síndrome de Rett/genética
6.
Biomedicines ; 9(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546327

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) is an X-linked epigenetic modulator whose dosage is critical for neural development and function. Loss-of-function mutations in MECP2 cause Rett Syndrome (RTT, OMIM #312750) while duplications in the Xq28 locus containing MECP2 and Interleukin-1 receptor-associated kinase 1 (IRAK1) cause MECP2 duplication syndrome (MDS, OMIM #300260). Both are rare neurodevelopmental disorders that share clinical symptoms, including intellectual disability, loss of speech, hand stereotypies, vasomotor deficits and seizures. The main objective of this exploratory study is to identify novel signaling pathways and potential quantitative biomarkers that could aid early diagnosis and/or the monitoring of disease progression in clinical trials. We analyzed by RT-PCR gene expression in whole blood and microRNA (miRNA) expression in plasma, in a cohort of 20 females with Rett syndrome, 2 males with MECP2 duplication syndrome and 28 healthy controls, and correlated RNA expression with disease and clinical parameters. We have identified a set of potential biomarker panels for RTT diagnostic and disease stratification of patients with microcephaly and vasomotor deficits. Our study sets the basis for larger studies leading to the identification of specific miRNA signatures for early RTT detection, stratification, disease progression and segregation from other neurodevelopmental disorders. Nevertheless, these data will require verification and validation in further studies with larger sample size including a whole range of ages.

7.
Clin Genet ; 97(4): 610-620, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043567

RESUMEN

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/patología , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Medicina de Precisión , Adulto Joven
8.
Int J Mol Sci ; 20(16)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31409060

RESUMEN

Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the MECP2 gene, the research community's effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome spectrum and provides an overview of the RTT-related genes described to date, many of which are involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation. Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide proper genetic counselling from a patient's perspective and the appropriate treatment.


Asunto(s)
Síndrome de Rett/genética , Animales , Regulación de la Expresión Génica , Heterogeneidad Genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Síndrome de Rett/diagnóstico , Síndrome de Rett/metabolismo , Transducción de Señal
9.
Sci Rep ; 9(1): 11983, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427717

RESUMEN

Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.


Asunto(s)
Fenotipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Inactivación del Cromosoma X , Alelos , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Genes Ligados a X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Análisis de Secuencia de ADN
10.
Mol Genet Genomic Med ; 7(8): e793, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206249

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a developmental disorder with an early onset and X-linked dominant inheritance pattern. It is first recognized in infancy and is seen almost always in girls, but it may be seen in boys on rare occasions. Typical RTT is caused by de novo mutations of the gene MECP2 (OMIM*300005), and atypical forms of RTT can be caused by mutations of the CDKL5 (OMIM*300203) and FOXG1 (OMIM*164874) genes. METHODS: Approximately 5% of the mutations detected in MECP2 are large rearrangements that range from exons to the entire gene. Here, we have characterized the deletions detected by multiplex ligation-dependent probe amplification (MLPA) in the gene MECP2 of 21 RTT patients. Breakpoints were delineated by DNA-qPCR until the amplification of the deleted allele by long-PCR was possible. RESULTS: This methodology enabled us to characterize deletions ranging from 1,235 bp to 85 kb, confirming the partial or total deletion of the MECP2 gene in all these patients. Additionally, our cases support the evidence claiming that most of these breakpoints occur in some restricted regions of the MECP2 gene. CONCLUSION: These molecular data together with the clinical information enable us to propose a genotype-phenotype correlation, which is essential for providing genetic counseling.


Asunto(s)
Dosificación de Gen , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Eliminación de Secuencia , Adolescente , Alelos , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Genotipo , Humanos , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Rett/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...