Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612813

RESUMEN

Non-communicable diseases (NCDs) are non-infectious and non-transmissible chronic disorders [...].


Asunto(s)
Enfermedades Mitocondriales , Enfermedades no Transmisibles , Humanos , Enfermedades no Transmisibles/epidemiología
2.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203317

RESUMEN

In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/uso terapéutico , Oligonucleótidos/uso terapéutico , ARN , Materiales Biocompatibles/uso terapéutico , Transporte Biológico
3.
Biomolecules ; 12(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36358980

RESUMEN

Mitochondrial (mt) DNA and nuclear (n) DNA have known structures and roles in cells; however, they are rarely compared under specific conditions such as oxidative or degenerative environments that can create damage to the DNA base moieties. Six purine lesions were ascertained in the mtDNA of wild type (wt) CSA (CS3BE-wtCSA) and wtCSB (CS1AN-wtCSB) cells and defective counterparts CS3BE and CS1AN in comparison with the corresponding total (t) DNA (t = n + mt). In particular, the four 5',8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. The 8-oxo-Pu levels were found to be in the range of 25-50 lesions/107 nucleotides in both the mtDNA and tDNA. The four cPu were undetectable in the mtDNA both in defective cells and in the wt counterparts (CSA and CSB), contrary to their detection in tDNA, indicating a nonappearance of hydroxyl radical (HO•) reactivity within the mtDNA. In order to assess the HO• reactivity towards purine nucleobases in the two genetic materials, we performed γ-radiolysis experiments coupled with the 8-oxo-Pu and cPu quantifications on isolated mtDNA and tDNA from wtCSB cells. In the latter experiments, all six purine lesions were detected in both of the DNA, showing a higher resistance to HO• attack in the case of mtDNA compared with tDNA, likely due to their different DNA helical topology influencing the relative abundance of the lesions.


Asunto(s)
Síndrome de Cockayne , Humanos , Daño del ADN , ADN Mitocondrial/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Purinas
4.
Cell Mol Life Sci ; 79(10): 536, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181557

RESUMEN

Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.


Asunto(s)
Células Madre Mesenquimatosas , Ingravidez , Antígenos CD , Células de la Médula Ósea , Diferenciación Celular/fisiología , Humanos , Mecanotransducción Celular , Proteínas de Transporte de Catión Orgánico , Osteogénesis , Proteoma , Simulación de Ingravidez
5.
Cells ; 11(8)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35455966

RESUMEN

Oxygen is important for lipid metabolism, being involved in both enzymatic transformations and oxidative reactivity, and is particularly influent when genetic diseases impair the repair machinery of the cells, such as described for Cockayne syndrome (CS). We used two cellular models of transformed fibroblasts defective for CSA and CSB genes and their normal counterparts, grown for 24 h under various oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%) to examine the fatty acid-based membrane remodeling by GC analysis of fatty acid methyl esters derived from membrane phospholipids. Overall, we first distinguished differences due to oxygen tensions: (a) hyperoxia induced a general boost of desaturase enzymatic activity in both normal and defective CSA and CSB cell lines, increasing monounsaturated fatty acids (MUFA), whereas polyunsaturated fatty acids (PUFA) did not undergo oxidative consumption; (b) hypoxia slowed down desaturase activities, mostly in CSA cell lines and defective CSB, causing saturated fatty acids (SFA) to increase, whereas PUFA levels diminished, suggesting their involvement in hypoxia-related signaling. CSB-deprived cells are the most sensitive to oxidation and CSA-deprived cells are the most sensitive to the radical-based formation of trans fatty acids (TFA). The results point to the need to finely differentiate biological targets connected to genetic impairments and, consequently, suggest the better definition of cell protection and treatments through accurate molecular profiling that includes membrane lipidomes.


Asunto(s)
Síndrome de Cockayne , Síndrome de Cockayne/genética , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Humanos , Hipoxia , Lipidómica , Oxígeno
6.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281194

RESUMEN

Cockayne syndrome group A (CS-A) is a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. Cells derived from CS-A patients present as pathological hallmarks excessive oxidative stress, mitochondrial fragmentation and apoptosis associated with hyperactivation of the mitochondrial fission dynamin related protein 1 (DRP1). In this study, by using human cell models we further investigated the interplay between DRP1 and CSA and we determined whether pharmacological or genetic inhibition of DRP1 affects disease progression. Both reactive oxygen and nitrogen species are in excess in CS-A cells and when the mitochondrial translocation of DRP1 is inhibited a reduction of these species is observed together with a recovery of mitochondrial integrity and a significant decrease of apoptosis. This study indicates that the CSA-driven modulation of DRP1 pathway is key to control mitochondrial homeostasis and apoptosis and suggests DRP1 as a potential target in the treatment of CS patients.


Asunto(s)
Síndrome de Cockayne/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis/genética , Línea Celular , Síndrome de Cockayne/fisiopatología , Progresión de la Enfermedad , Dinaminas/genética , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/fisiología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Estrés Oxidativo , Quinazolinonas/metabolismo , Quinazolinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Arch Biochem Biophys ; 710: 108977, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34174223

RESUMEN

As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Daño del ADN , Reparación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Genoma Humano , Genoma Mitocondrial , Inestabilidad Genómica , Humanos , Redes y Vías Metabólicas , Dinámicas Mitocondriales , Mitofagia , Modelos Neurológicos , Mutación , Enfermedades Neurodegenerativas/prevención & control , Especies Reactivas de Oxígeno/metabolismo
8.
Cells ; 9(7)2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664519

RESUMEN

Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5',8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3-6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.


Asunto(s)
Síndrome de Cockayne/patología , Daño del ADN , Oxígeno/metabolismo , Purinas/metabolismo , Línea Celular , Síndrome de Cockayne/genética , ADN/aislamiento & purificación , Humanos , Mutación/genética , Purinas/química , Estereoisomerismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Cells ; 8(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683970

RESUMEN

Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5',8-cyclopurines (cPu) lesions (i.e., 5'R-cdG, 5'S-cdG, 5'R-cdA and 5'S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82-2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10-4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5'R/5'S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.


Asunto(s)
Reparación del ADN/fisiología , Oxígeno/metabolismo , Xerodermia Pigmentosa/metabolismo , Línea Celular , Cromatografía Liquida/métodos , Cobre/metabolismo , ADN/metabolismo , Daño del ADN , Humanos , Hipoxia/metabolismo , Hierro/metabolismo , Purinas/metabolismo , Espectrometría de Masas en Tándem/métodos , Xerodermia Pigmentosa/patología
11.
Oncotarget ; 9(14): 11581-11591, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29545921

RESUMEN

CS proteins have been involved in the repair of a wide variety of DNA lesions. Here, we analyse the role of CS proteins in DNA break repair by studying histone H2AX phosphorylation in different cell cycle phases and DNA break repair by comet assay in CS-A and CS-B primary and transformed cells. Following methyl methane sulphate treatment a significant accumulation of unrepaired single strand breaks was detected in CS cells as compared to normal cells, leading to accumulation of double strand breaks in S and G2 phases. A delay in DSBs repair and accumulation in S and G2 phases were also observed following IR exposure. These data confirm the role of CSB in the suppression of NHEJ in S and G2 phase cells and extend this function to CSA. However, the repair kinetics of double strand breaks showed unique features for CS-A and CS-B cells suggesting that these proteins may act at different times along DNA break repair. The involvement of CS proteins in the repair of DNA breaks may play an important role in the clinical features of CS patients.

12.
Oncotarget ; 8(61): 102852-102867, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262528

RESUMEN

The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.

13.
Oncotarget ; 8(49): 84827-84840, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156686

RESUMEN

DNA repair gene expression in a set of gastric cancers suggested an inverse association between the expression of the mismatch repair (MMR) gene MLH1 and that of the base excision repair (BER) gene DNA polymerase ß (Polß). To gain insight into possible crosstalk of these two repair pathways in cancer, we analysed human gastric adenocarcinoma AGS cells over-expressing Polß or Polß active site mutants, alone or in combination with MLH1 silencing. Next, we investigated the cellular response to the alkylating agent methyl methanesulfonate (MMS) and the purine analogue 6-thioguanine (6-TG), agents that induce lesions that are substrates for BER and/or MMR. AGS cells over-expressing Polß were resistant to 6-TG to a similar extent as when MLH1 was inactivated while inhibition of O6-methylguanine-DNA methyltransferase (MGMT) was required to detect resistance to MMS. Upon either treatment, the association with MLH1 down-regulation further amplified the resistant phenotype. Moreover, AGS cells mutated in Polß were hypersensitive to both 6-TG and MMS killing and their sensitivity was partially rescued by MLH1 silencing. We provide evidence that the critical lethal lesions in this new pathway are double strand breaks that are exacerbated when Polß is defective and relieved when MLH1 is silenced. In conclusion, we provide evidence of crosstalk between MLH1 and Polß that modulates the response to alkylation damage. These studies suggest that the Polß/MLH1 status should be taken into consideration when designing chemotherapeutic approaches for gastric cancer.

14.
Free Radic Biol Med ; 107: 278-291, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27932076

RESUMEN

Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.


Asunto(s)
Enfermedades Cocleares/genética , ADN Glicosilasas/genética , Reparación del ADN , Oftalmopatías/genética , Infarto del Miocardio/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Daño del ADN , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Estrés Oxidativo , Fenotipo , Polimorfismo de Nucleótido Simple
15.
J Proteomics ; 137: 3-18, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-26571091

RESUMEN

Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE: Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.


Asunto(s)
Proteoma/metabolismo , Vuelo Espacial , Ingravidez , Animales , Humanos
16.
Mech Ageing Dev ; 134(5-6): 261-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23562424

RESUMEN

Cockayne syndrome (CS) is a rare hereditary disorder in which infants suffer severe developmental and neurological alterations and early death. Two genes encoding RNA polymerase II cofactors, CSA and CSB, are mutated in this syndrome. CSA and CSB proteins are known to be involved in the transcription-coupled DNA repair pathway but the sensitivity of mutant cells to a number of physical/chemical agents besides UV radiation, such as ionizing radiation, hydrogen peroxide and bioenergetic inhibitors indicate that these proteins play a pivotal role in additional pathways. In this review we will discuss the evidence that implicate CS proteins in the control of oxidative stress response with special emphasis on recent findings that show an altered redox balance and dysfunctional mitochondria in cells derived from patients. Working models of how these new functions might be key to developmental and neurological disease in CS will be discussed.


Asunto(s)
Síndrome de Cockayne/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Estrés Oxidativo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Animales , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II/genética , Radiación Ionizante , Factores de Transcripción/genética , Rayos Ultravioleta/efectos adversos
17.
Aging Cell ; 11(3): 520-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22404840

RESUMEN

Cockayne syndrome (CS) is a rare hereditary multisystem disease characterized by neurological and development impairment, and premature aging. Cockayne syndrome cells are hypersensitive to oxidative stress, but the molecular mechanisms involved remain unresolved. Here we provide the first evidence that primary fibroblasts derived from patients with CS-A and CS-B present an altered redox balance with increased steady-state levels of intracellular reactive oxygen species (ROS) and basal and induced DNA oxidative damage, loss of the mitochondrial membrane potential, and a significant decrease in the rate of basal oxidative phosphorylation. The Na/K-ATPase, a relevant target of oxidative stress, is also affected with reduced transcription in CS fibroblasts and normal protein levels restored upon complementation with wild-type genes. High-resolution magnetic resonance spectroscopy revealed a significantly perturbed metabolic profile in CS-A and CS-B primary fibroblasts compared with normal cells in agreement with increased oxidative stress and alterations in cell bioenergetics. The affected processes include oxidative metabolism, glycolysis, choline phospholipid metabolism, and osmoregulation. The alterations in intracellular ROS content, oxidative DNA damage, and metabolic profile were partially rescued by the addition of an antioxidant in the culture medium suggesting that the continuous oxidative stress that characterizes CS cells plays a causative role in the underlying pathophysiology. The changes of oxidative and energy metabolism offer a clue for the clinical features of patients with CS and provide novel tools valuable for both diagnosis and therapy.


Asunto(s)
Síndrome de Cockayne/metabolismo , Fibroblastos/metabolismo , Estrés Oxidativo/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Daño del ADN , Reparación del ADN , Fibroblastos/patología , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa
18.
Mol Cell Endocrinol ; 323(2): 215-23, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20211691

RESUMEN

TTF-1/Nkx2.1 is a homeodomain-containing transcription factor required for the proper development of ventral forebrain, including some structures of the hypothalamus. TTF-1/Nkx2.1 remains expressed in the hypothalamus after birth and it plays a crucial role during sexual development. To identify putative TTF-1/Nkx2.1 target genes in GnRH neurons, we have studied the gene expression profile of the GT1-7 cells exogenously expressing TTF-1/Nkx2.1 coding gene. Our transcriptome analysis confirms that TTF-1/Nkx2.1 is involved in neuron morphogenesis and differentiation. Many of the newly identified TTF-1/Nkx2.1 target genes have a direct involvement with the central regulation of sexual maturity. In particular, we have identified Sparc as a gene directly regulated by TTF-1/Nkx2.1 at the promoter level. To further support the role of TTF-1 in GnRH neurons, we show that Sparc is involved in the regulation of the GnRH secretion in GT1-7 cells.


Asunto(s)
Línea Celular Transformada , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética
19.
J Exp Clin Cancer Res ; 27: 71, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19017395

RESUMEN

BACKGROUND: The understanding of cutaneous pigmentation biology is relevant from the biologic and clinical point of view. The binding of alpha-melanocortin and its specific receptor, on the plasma membrane of melanin synthesising cells, plays a crucial role in melanins biosynthesis. Furthermore, loss of MC1R function is associated with an increased incidence of melanoma and non-melanoma skin cancer. The expression of the alpha-melanocortin receptor gene is highly controlled but, at the present, region responsible for tissue-specific activity of the gene promoter has not been identified. METHODS: We have cloned the genomic sequences upstream the human MC1R coding gene. A DNA fragment of 5 kilobases upstream the human MC1R encoding sequence was placed in front of a reporter gene and several deletion mutants of such fragment have been prepared. These constructs have been tested for the ability to drive the melanocyte-specific gene expression of the reporter gene using transfection experiments in melanocyte and non-melanocyte cell lines. From these experiments we identified a DNA fragment with the ability to drive the gene transcription in a tissue-specific way and we used this small DNA fragment in DNA-protein interaction assays. RESULTS: We show that the 150 base pairs upstream the MC1R gene initiation codon are able to drive the melanocyte-specific gene transcription. Furthermore, we provide experimental evidences suggesting that on such minimal melanocyte-specific gene promoter can assemble tissue-specific complexes. CONCLUSION: The present results strongly imply that the transcriptional regulation of the melanocyte-specific MC1R gene requires an internal promoter located in the 150 base pairs upstream the initiation codon.


Asunto(s)
Melanocitos/metabolismo , Regiones Promotoras Genéticas/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Codón Iniciador , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Receptor de Melanocortina Tipo 1/metabolismo , Transcripción Genética , Transfección
20.
Methods Mol Biol ; 314: 377-96, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16673895

RESUMEN

Base excision repair (BER) is the main pathway for removal of endogenous DNA damage. This repair mechanism is initiated by a specific DNA glycosylase that recognizes and removes the damaged base through N-glycosylic bond hydrolysis. The generated apurinic/apyrimidinic (AP) site can be repaired in mammalian cells by two alternative pathways which involve either the replacement of one (short patch BER) or more nucleotides (long patch BER) at the lesion site. This chapter describes a repair replication assay for measuring BER efficiency and mode in mammalian cell extracts. The DNA substrate used in the assay is either a randomly depurinated plasmid DNA or a plasmid containing a single lesion that is processed via BER (for example a single AP site or uracil residue). The construction of a single lesion at a defined site of the plasmid genome makes the substrate amenable to fine mapping of the repair patches, thus allowing discrimination between the two BER pathways.


Asunto(s)
Ácido Apurínico/análisis , Reparación del ADN , ADN/análisis , Polinucleótidos/análisis , Animales , Extractos Celulares/química , Células Cultivadas , Daño del ADN , Replicación del ADN , ADN Circular/efectos de los fármacos , Humanos , Marcaje Isotópico , Mamíferos , Radioisótopos de Fósforo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...