Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmacol Ther ; 178: 1-17, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28322970

RESUMEN

Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.


Asunto(s)
Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Neoplasias/terapia , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Epigenómica , Humanos , Hipertermia Inducida , Sistema Inmunológico/efectos de los fármacos , Neoplasias/inmunología
2.
Langmuir ; 31(10): 3059-68, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25715270

RESUMEN

A method that computes minimum energy paths (MEPs) of wetting transitions is developed. The method couples the Cahn-Hilliard formulation of a modified phase-field method with the simplified string method. Its main computational kernel is the fast Fourier transform that is efficiently performed on graphics processing units. The effectiveness of the proposed method is demonstrated on two types of transitions of droplets on grooved surfaces. The first is the transition from the Cassie-Baxter wetting state to the Wenzel state, where it is shown that it progresses in a sequential manner with the droplet wetting each groove successively. The second transition type is a lateral displacement of the droplet against the grooves, where the droplet successively detaches/attaches from/to the rear/front protrusion of the surface (a transition in the reverse order is also possible). The energy barriers of both the transitions are extracted from the MEP; they are useful for the evaluation of the robustness of superhydrophobic surfaces (resistance to the Cassie-Baxter to Wenzel transition) and the droplet mobility on those surfaces (high mobility/small resistance to lateral displacements). The relation of the MEP with the potential transition paths coming from the solution space mapping is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...