Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791119

RESUMEN

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Asunto(s)
Furina , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , Furina/antagonistas & inhibidores , Furina/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Antivirales/farmacología , Antivirales/química , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Evaluación Preclínica de Medicamentos/métodos
2.
J Biomed Mater Res A ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783716

RESUMEN

Population aging, reduced economic capacity, and neglecting the treatments for oral pathologies, are the main causal factors for about 3 billion individuals who are suffering from partial/total edentulism or alveolar bone resorption: thus, the demand for dental implants is increasingly growing. To achieve a good prognosis for implant-supported restorations, adequate peri-implant bone volume is mandatory. The Guided Bone Regeneration (GBR) technique is one of the most applied methods for alveolar bone reconstruction and treatment of peri-implant bone deficiencies. This technique involves the use of different types of membranes in association with some bone substitutes (autologous, homologous, or heterologous). However, time for bone regeneration is often too long and the bone quality is not simply predictable. This study aims at engineering and evaluating the efficacy of modified barrier membranes, enhancing their bioactivity for improved alveolar bone tissue regeneration. We investigated membranes functionalized with chitosan (CS) and chitosan combined with the peptide GBMP1α (CS + GBMP1α), to improve bone growth. OsseoGuard® membranes, derived from bovine Achilles tendon type I collagen crosslinked with formaldehyde, were modified using CS and CS + GBMP1α. The functionalization, carried out with 1-ethyl-3-(3 dimethylaminopropyl)carbodiimide and sulfo-N-Hydroxysuccinimide (EDC/sulfo-NHS), was assessed through FT-IR and XPS analyses. Biological assays were performed by directly seeding human osteoblasts onto the materials to assess cell proliferation, mineralization, gene expression of Secreted Phosphoprotein 1 (SPP1) and Runt-Related Transcription Factor 2 (Runx2), and antibacterial properties. Both CS and CS + GBMP1α functionalizations significantly enhanced human osteoblast proliferation, mineralization, gene expression, and antibacterial activity compared to commercial membranes. The CS + GBMP1α functionalization exhibited superior outcomes in all biological assays. Mechanical tests showed no significant alterations of membrane biomechanical properties post-functionalization. The engineered membranes, especially those functionalized with CS + GBMP1α, are suitable for GBR applications thanks to their ability to enhance osteoblast activity and promote bone tissue regeneration. These findings suggest a potential advancement in the treatment of oral cavity problems requiring bone regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...